Salta al contenuto principale della pagina

SOLAR CELL MATERIALS WORKING PRINCIPLES

CODE 61933
ACADEMIC YEAR 2021/2022
CREDITS
  • 6 cfu during the 2nd year of 9017 SCIENZA E INGEGNERIA DEI MATERIALI (LM-53) - GENOVA
  • 6 cfu during the 2nd year of 9012 FISICA(LM-17) - GENOVA
  • 6 cfu during the 1st year of 9017 SCIENZA E INGEGNERIA DEI MATERIALI (LM-53) - GENOVA
  • 6 cfu during the 1st year of 9012 FISICA(LM-17) - GENOVA
  • SCIENTIFIC DISCIPLINARY SECTOR FIS/03
    LANGUAGE Italian
    TEACHING LOCATION
  • GENOVA
  • SEMESTER 2° Semester
    TEACHING MATERIALS AULAWEB

    OVERVIEW

    The course describes the physical mechanisms underlying the direct conversion of solar radiation into electrical energy by exploiting the photovoltaic effect. The fundamental thermodynamic limits for efficiency and the constraints on the choice of materials and on the construction parameters of high efficiency devices will therefore be understood. Finally, a laboratory activity aimed at electro-optical and morphological characterization of commercial solar cells is planned.

    AIMS AND CONTENT

    LEARNING OUTCOMES

    The course aims to illustrate the potential of the solar resource and the physical mechanisms underlying the conversion of solar radiation into electrical energy. The semiconductor physics elements necessary to describe the functioning of solar cells with particular reference to those based on silicon absorbers will be introduced. Finally, we will provide an overview of the new concepts and materials designed to increase the efficiency of solar cell together and an introduction to the experimental characterisation of Solar cells (morphological, optical, electro-optical).

    AIMS AND LEARNING OUTCOMES

    The course objectives include the acquisition of theoretical knowledge related to: Solar energy resource and the sizing of photovoltaic production potential assessed through the use of reference simulation software (PVGIS) available on Open Access platforms. Optical absorption processes in semiconductors. Physics of solar cells and semiconductors, with particular reference to silicon junction devices. Thermodynamic limits to the efficiency of a photovoltaic converter and new concepts and materials to increase the efficiency of solar cells.
    
    

    The student will be able to apply the knowledge acquired to complete the correct sizing of a photovoltaic system, to estimate the potential of solar radiation and photovoltaic production in a specific location, also using open source software simulation tools (PVGIS). The student will be able to critically discuss the physical limits to the conversion efficiency of photovoltaic devices, and the effect on the efficiency of physical parameters and constituent materials.

    The educational objectives of the cosmos also provide for the acquisition of experimental skills relivably to the electro-optical and morphological characterization of commercial solar cells.
    

    PREREQUISITES

    The knowledge of the basic concept of Solid Physics and Quantum Machanics are considered to be acquired with particular reference to the behavior of electrons in metals and semiconductors. A prerequisite is also the knowledge of general and Modern Physics Physics with particular reference to electromagnetism, optics and radiation-matter interaction.

    TEACHING METHODS

    The course comprises about 42 hours of classroom lectures in which the theoretical topics are presented. Approximately 8 hours of laboratory activity are also planned in which the characterization of commercial solar cells is carried out with regard to their optical response, morphology and structure, their electrical response under illuminated conditions.

    SYLLABUS/CONTENT

    1. Introduction:
    
    renewable energy, global warming, energy policy
    
    2- Solar energy resource:
    
    Solar radiation. Spectrum of a black body; Effects terrestrial atmosphere on solar radiation: absorption from atoms and molecules and spectral distribution of solar radiation. Absorption from semiconductors; Optical processes; Concentration of solar radiation;
    
    3- Physics of solar cells:
    
    Recalls of semiconductor physics. Absorption of photons and generation of electron-hole pairs; Recombination of electrons and holes (radiative and non-radiative). Recombination at grain boundaries, defects and surfaces; Dissemination of minority carriers; lifetime and diffusion length of minority carriers;
    
    4- Basic structure of a Silicon solar cell:
    
    p-n and p-i-n Junction . Separation of electrons and holes; I-V characteristic of a solar cell. Monocrystalline solar cells; Polycrystalline solar cells; Theoretical limits for energy conversion (Schockley-Queisser approach); Efficiency and energy gap; Spectral response; Effect of parasitic resistances; temperature effects;
    
    5- New concepts and materials to increase the efficiency of solar cells:
    
    Losses by reflection; Concentrating solar cells. Thin-film solar cells; Amplification of Photon Collection in nanostructured cells; Introduction to other semiconductor materials of photovoltaic interest; Thermodynamic limits to the efficiency of a thermodynamic solar converter; Tandem cells (multi-junction) (outline). Intermediate band cells (outline); Cells with warm carriers (outline); Impact ionization cells (outline).
    
    6- Laboratory activities
    
    Electro-optical and morphological characterization of commercial solar cells

    RECOMMENDED READING/BIBLIOGRAPHY

    • “Handbook of Photovoltaic Science and Engineering” Eds. A.Luque and S. Hegedus, Wiley
    • “The Physics of Solar cells” by Jenny Nelson (Imperial College, UK) World Scientific Press
    •  “Materials Concepts for Solar Cells” by Thomas Dittrich (Imperial College Press) 2nd edition

    TEACHERS AND EXAM BOARD

    Exam Board

    FRANCESCO BUATIER DE MONGEOT (President)

    DAVIDE COMORETTO

    MARIA CATERINA GIORDANO (President Substitute)

    CORRADO BORAGNO (Substitute)

    LESSONS

    LESSONS START

    Normally the start of lessons is scheduled during the first week of March.

     

    Class schedule

    All class schedules are posted on the EasyAcademy portal.

    EXAMS

    EXAM DESCRIPTION

    The exam will consist in an oral interview lasting about 45 minutes, on a date that can be agreed with the teacher who must be contacted well in advance.
    The oral exam will be held in the presence of two professors belonging to the commission, at least one of which chosen between F. Buatier de Mongeot and M.C. Giordano.
    During the exam the student can illustrate one of the topics of the program of his choice (about 1/3 of the test) while the remaining time of the test is dedicated to deepening the remaining parts of the program.

    ASSESSMENT METHODS

    During the oral exam, the actual achievement of the expected learning outcomes will be verified. The level of knowledge acquired on specific points of the program will be verified, the degree of understanding with respect to the role of the physical mechanisms that determine the operation and efficiency of a photovoltaic device, and the critical ability in dealing with specific cases set by the teacher. The quality of the exposure, the correct use of the specialist vocabulary, the ability to reason critically with respect to specific cases posed by the teacher are also assessed.

    Exam schedule

    Date Time Location Type Notes
    14/01/2022 15:00 GENOVA Orale
    09/02/2022 09:00 GENOVA Orale
    09/06/2022 15:00 GENOVA Orale
    30/06/2022 09:00 GENOVA Orale
    01/09/2022 09:00 GENOVA Orale