The course is aimed at providing machine learning basic and advanced techniques for data driven signal processing models to be used within autonomous systems design. In particular, perception and control modules in autonomous systems rely more and more on signal processing approaches whose parametrization can be learned from observing multimedia heterogeneous signals produced by the artificial system while performing specific tasks. The course analyses data acquisition and processing tradeoffs between edge and cloud resources on the basis of real-time, computational and energy consumption requirements. Specific attention will be devoted to high dimensional data processing on the edge (with real practical examples in Python), showing how deep learning approaches can be adapted and optimized for working with limited computational capabilities.
The lessons alternate theoretical explanations with practical exercises. Theoretical explanations are frequently exemplified with the analysis, execution, and debugging of code fragments directly on the teacher's PC. All the material seen in class (slides and practical examples) is shared through the AulaWeb and Teams platforms. Students can interact directly with the teacher during lessons or through the Teams platform.
Ricevimento: on request
SANDRO ZAPPATORE (Presidente)
CARLO REGAZZONI
ROBERTO BRUSCHI (Presidente Supplente)
LUCIO MARCENARO (Presidente Supplente)
https://corsi.unige.it/10378/p/studenti-orario
Development and presentation of practical project work.