Salta al contenuto principale
CODICE 66176
ANNO ACCADEMICO 2018/2019
CFU
SETTORE SCIENTIFICO DISCIPLINARE MAT/07
LINGUA Inglese
SEDE
  • LA SPEZIA
PERIODO 2° Semestre
MATERIALE DIDATTICO AULAWEB

PRESENTAZIONE

The course aims to provide a presentation of the most common partial differential equations (PDE) and their  solution techniques through an analysis of various applications. The emphasis is  devoted to  second order PDE and the understanding of the specific techniques  for  elliptic, parabolic and hyperbolic cases.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

The unit deals with the most important partial differential equations through their most important mathematical physical in the pleasure of craft sector.

MODALITA' DIDATTICHE

The unit is organised with for hours a week: a part of this course takes place in the laboratory to teach Matlab (matrix laboratory)

 

PROGRAMMA/CONTENUTO

Introduction  to  partial differential equations (PDE). The elastic string  and the transition from discrete systems to continuous systems .
2 . The differential equations of the second order. The classification and the normal form; elliptic , hyperbolic and parabolic  PDE.
3 . Elliptic equations. The harmonic functions. The problems of Dirichelet and Neuman , The Poisson formula for the circle.
4 . The variable separation technique. The series and the Fourier transform . The Gibbs effect, the analysis of normal modes , the delta Dirac "function”.

5 . The Bessel functions, the problems in polar coordinates.
6 . The parabolic differential equations, diffusion and heat  equations; descriptions in the domain of space and time.
7 . The hyperbolic equations: the equation of D' Alembert. The method of characteristics, the elastic membrane, the mechanical interpretation of the normal modes
8 . PDE of higher order: the biharmonic equation, its Cauchy problem. The vibration of bars and plates.

TESTI/BIBLIOGRAFIA

  • A.N.Tichonov, A.A.Samarskij: Equazioni della Fisica matematica, Problemi della fisica matematica, Mosca,1982;
  • R. Courant, D. Hilbert, Methods of Mathematical Phisics vol I e II, Interscience, NY, 1973;
  • R. Bracewell, The Fourier Transform and Its Applications, New York: McGraw-Hill, 1999;
  • P. V. O’ Neil, Advanced engineering mathematica, Brooks Cole, 2003;
  • H. Goldstein, Meccanica Classica, Zanichelli, Bologna, 1985;
  • V. I. Smirnov. Corso di Matematica superiore, Vol. 3. MIR (1978).

DOCENTI E COMMISSIONI

Commissione d'esame

ROBERTO CIANCI (Presidente)

GIOVANNI RESTA (Presidente)

LEZIONI

INIZIO LEZIONI

Come da Calendario didattico

Second semester.

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

Examinations are oral . Some mandatory exercizes can be requested.

Calendario appelli

Data appello Orario Luogo Tipologia Note
11/01/2019 10:30 LA SPEZIA Orale
06/02/2019 10:30 LA SPEZIA Orale
10/06/2019 10:30 LA SPEZIA Orale
11/07/2019 10:30 LA SPEZIA Orale
11/09/2019 10:30 LA SPEZIA Orale