Salta al contenuto principale
CODICE 90533
ANNO ACCADEMICO 2018/2019
CFU
SETTORE SCIENTIFICO DISCIPLINARE ING-INF/06
LINGUA Inglese
SEDE
  • GENOVA
PERIODO 2° Semestre
MATERIALE DIDATTICO AULAWEB

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Students will initially learn that the computational mechanisms of the human brain are one of the greatest challenges of this century and that a great effort has been provided thanks to large-scale simulations and the development of theoretical models at different scales of observation. Students will then be introduced to the usage of computational techniques to model biological neural networks and will understand the brain and its function through a variety of theoretical constructs and computer science analogies. Students will be provided with insights about how the developing of in silico models, as well as of neuromorphic computational engines – based on the brain's circuitry – can contribute a better understanding of the coding strategies used by the “biological” brain to process incoming stimuli, and produce cognitive and/or motor outputs.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

The emphasis is on neural information processing at “network level”, in developing quantitative models, as well as in formalizing new paradigms of computation and data representation.

MODALITA' DIDATTICHE

Lectures and practicals

PROGRAMMA/CONTENUTO

  • Neuron models: i) Biophysical model of neurons: passive and Hodgkin and Huxley models; ii) Reduced neuron models: Integrate-and-fire (IF) and Izhikevich models
  • Synaptic transmission and plasticity: i) Phenomenological models; ii) Dynamical models; iii) Spike Timing Dependent Plasticity (STDP).
  • Network models: i) overview of different strategies (firing vs spiking) to model large-scale neuronal dynamics; ii) Meta-networks; iii) Balanced networks and syn-fire chains; iv) Role of the connectivity in the emerging dynamics; v) overview of the graph theory and metrics for characterizing a network; vi) different kind of connectivity; functional vs structural connectivity; vii) interplay between connectivity and dynamics.]
  • Computational paradigms: i) Coding and decoding information; ii) Feed-forward and recurrent networks, lateral inhibition.
  • Multidimensional data processing and representation: i) The case study of early sensory systems: receptive fields, tuning curves, population activity, read-out mechanisms; ii) Efficient coding and reduction of dimensionality; iii) Optimal decoding methods.
  • Computational synthesis of brain information processing: models of “perceptual engines”, potentialities and design examples.

TESTI/BIBLIOGRAFIA

Materiale disponibile su aulaweb o distribuito a lezione (copia dei lucidi e note).

Ulteriori riferimenti:

Methods in Neuronal Modeling, Koch and Segev, MIT press, 1999.

Spiking Neuron Models, Gerstner and Kistler, Cambridge press, 2002.

Dynamical systems in neuroscience. Izhikevich, MIT press, 2007.

P. Dayan and L.F. Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, 200

DOCENTI E COMMISSIONI

Commissione d'esame

PAOLO MASSOBRIO (Presidente)

SILVIO PAOLO SABATINI (Presidente)

LEZIONI

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

Esame orale e discussione progetto

Calendario appelli

Data appello Orario Luogo Tipologia Note
15/02/2019 09:00 GENOVA Esame su appuntamento
26/07/2019 09:00 GENOVA Esame su appuntamento
20/09/2019 09:00 GENOVA Esame su appuntamento
14/02/2020 09:00 GENOVA Esame su appuntamento