CODICE 56584 ANNO ACCADEMICO 2019/2020 CFU 12 cfu anno 1 INGEGNERIA MECCANICA 8784 (L-9) - LA SPEZIA SETTORE SCIENTIFICO DISCIPLINARE MAT/05 LINGUA Italiano SEDE LA SPEZIA PERIODO Annuale MATERIALE DIDATTICO AULAWEB PRESENTAZIONE Lo scopo di questo corso, principalmente rivolto agli studenti del primo anno di Ingegneria consiste nel fornire solide basi matematiche atte ad affrontare i vari problemi per la cui risoluzione servano strumentidi Analisi Matematica. Il corso si focalizzerà soprattutto sullo studio di funzioni di una variabile reale e sulla risoluzione di equazioni differenziali. OBIETTIVI E CONTENUTI OBIETTIVI FORMATIVI Il corso si propone di fornire gli elementi essenziali di calcolo differenziale ed integrale per le funzioni di una variabile ed anche di due o più variabili, fornisce inoltre una introduzione alle equazioni differenziali ordinarie. OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO Lo studente dovrà acquisire una solida capacità di calcolo, in particolare dovrà saper studiare una funzione di una o più variabili reali e applicare i vari teoremi per la risoluzione di semplici equazioni differenziali del primo ordine e di ordine superiore (lineari a coefficienti costanti). PREREQUISITI Algebra elementare: equazioni e disequazioni, trigonometria piana. MODALITA' DIDATTICHE 106 ore di lezioni sia teoriche che di esercitazioni. Durante le lezioni teoriche verranno presentati le definizioni e i teoremi con molti esempi ed applicazioni. Durante le esercitazioni verranno invece risolti molti esercizi. Durante l'anno accademico saranno effettuati alcune esercitazioni guidate. PROGRAMMA/CONTENUTO Numeri reali, estremo superiore ed inferiore, concetto di funzione di una variabile reale, funzioni elementari, limiti, ordini di infinitesimo ed infinito, funzioni continue, funzioni derivabili, differenziabilita', derivate di ordine superiore, formula di Taylor, sviluppo delle funzioni elementari, primitive ed integrali indefiniti, principali metodi di integrazione indefinita, integrali definiti, teorema fondamentale del calcolo integrale, equazioni differenziali del primo ordine, problema e teorema di Cauchy, risoluzione delle equazioni differenziali lineari del primo ordine e delle equazioni a variabili separabili, equazioni differenziali lineari di ordine n a coefficienti costanti. TESTI/BIBLIOGRAFIA F. Parodi, T. Zolezzi, Appunti di Analisi matematica, ECIG, 2007 R. A. Adams, Calcolo differenziale 1 & 2, Casa Editrice Ambrosiana, 2007 A. Bacciotti, F. Ricci, Lezioni di Analisi Matematica 1 e 2, Levrotto & Bella, 1991. M. Bramanti, C. Pagani, S. Salsa, Analisi matematica 1 e 2 Zannichelli, 2008 F.De Mari, Dispense di Analisi Matematica 1, http://www.dima.unige.it/~demari/DIDA.html M.Baronti-F.De Mari-R.Van Der Putten-I.Venturi: Calculus Problems, Springer DOCENTI E COMMISSIONI MARCO BARONTI Ricevimento: Il docente è disponibile per spiegazioni un pomeriggio alla settimana. ROBERTUS VAN DER PUTTEN Ricevimento: Nel primo semestre il docente è a disposizione per spiegazioni ogni Giovedi ore 14 – 16 presso l’aula magna del DIFI. Commissione d'esame MARCO BARONTI (Presidente) ROBERTUS VAN DER PUTTEN (Presidente) CLAUDIO ESTATICO LEZIONI INIZIO LEZIONI Come da calendario didattico. Orari delle lezioni ANALISI MATEMATICA 1 ESAMI MODALITA' D'ESAME L'esame finale consiste di una prova scritta e di una prova orale. per accedere alla prova orale lo studente dovrà conseguire una valutazione di almeno 12/30. MODALITA' DI ACCERTAMENTO Durante la prova scritta lo studente dovrà risolvere alcuni esercizi sullo studio di funzioni e sul problema differenziale di Cauchy. Durante la prova orale lo studente dovrà evidenziare capacità di analisi critiche e dovrà saper applicare a facili esercizi i principali teoremi. Calendario appelli Data appello Orario Luogo Tipologia Note 20/01/2020 09:30 LA SPEZIA Scritto 24/02/2020 09:30 LA SPEZIA Scritto 09/06/2020 09:30 LA SPEZIA Scritto 13/07/2020 09:30 LA SPEZIA Scritto 15/09/2020 09:30 LA SPEZIA Scritto