CODICE 90533 ANNO ACCADEMICO 2020/2021 CFU 6 cfu anno 1 COMPUTER SCIENCE 10852 (LM-18) - GENOVA SETTORE SCIENTIFICO DISCIPLINARE ING-INF/06 LINGUA Inglese SEDE GENOVA PERIODO 2° Semestre MATERIALE DIDATTICO AULAWEB OBIETTIVI E CONTENUTI OBIETTIVI FORMATIVI Learning computational techniques for the modeling of biological neural networks and understanding the brain and its function through a variety of theoretical constructs and computer science analogies. OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO The emphasis is on neural information processing at “network level”, in developing quantitative models, as well as in formalizing new paradigms of computation and data representation. MODALITA' DIDATTICHE Lectures and practicals PROGRAMMA/CONTENUTO Neuron models: i) Biophysical model of neurons: passive and Hodgkin and Huxley models; ii) Reduced neuron models: Integrate-and-fire (IF) and Izhikevich models Synaptic transmission and plasticity: i) Phenomenological models; ii) Dynamical models; iii) Spike Timing Dependent Plasticity (STDP). Network models: i) overview of different strategies (firing vs spiking) to model large-scale neuronal dynamics; ii) Meta-networks; iii) Balanced networks and syn-fire chains; iv) Role of the connectivity in the emerging dynamics; v) overview of the graph theory and metrics for characterizing a network; vi) different kind of connectivity; functional vs structural connectivity; vii) interplay between connectivity and dynamics.] Computational paradigms: i) Coding and decoding information; ii) Feed-forward and recurrent networks, lateral inhibition. Multidimensional data processing and representation: i) The case study of early sensory systems: receptive fields, tuning curves, population activity, read-out mechanisms; ii) Efficient coding and reduction of dimensionality; iii) Optimal decoding methods. Computational synthesis of brain information processing: models of “perceptual engines”, potentialities and design examples. TESTI/BIBLIOGRAFIA Materiale disponibile su aulaweb o distribuito a lezione (copia dei lucidi e note). Ulteriori riferimenti: Methods in Neuronal Modeling, Koch and Segev, MIT press, 1999. Spiking Neuron Models, Gerstner and Kistler, Cambridge press, 2002. Dynamical systems in neuroscience. Izhikevich, MIT press, 2007. P. Dayan and L.F. Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, 200 DOCENTI E COMMISSIONI PAOLO MASSOBRIO Ricevimento: Previo appuntamento via e-mail. SILVIO PAOLO SABATINI Ricevimento: Lunedì 11:00-13:00 Giovedì 16:00-17:00 Ufficio: pad. E, Via Opera Pia 13 (III piano) Lab: “Bioengineering - SyNaPSI”, pad. E, Via Opera Pia 13, (I piano) Commissione d'esame PAOLO MASSOBRIO (Presidente) SILVIO PAOLO SABATINI (Presidente Supplente) LEZIONI Orari delle lezioni L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy ESAMI MODALITA' D'ESAME Esame orale e discussione progetto Calendario appelli Data appello Orario Luogo Tipologia Note 12/02/2021 09:00 GENOVA Esame su appuntamento 23/07/2021 09:00 GENOVA Esame su appuntamento 17/09/2021 09:00 GENOVA Esame su appuntamento 11/02/2022 09:00 GENOVA Esame su appuntamento