Salta al contenuto principale della pagina

ANALISI MATEMATICA 4

CODICE 106950
ANNO ACCADEMICO 2022/2023
CFU
  • 7 cfu al 3° anno di 8760 MATEMATICA (L-35) - GENOVA
  • SETTORE SCIENTIFICO DISCIPLINARE MAT/05
    SEDE
  • GENOVA
  • PERIODO 1° Semestre
    MATERIALE DIDATTICO AULAWEB

    PRESENTAZIONE

    Corso obbligatorio del terzo anno LT in Matematica; consta di due parti: una parte di analisi complessa e una parte di analisi funzionale, entrambe a livello introduttivo.

    OBIETTIVI E CONTENUTI

    OBIETTIVI FORMATIVI

    L'obiettivo e' fornire agli studenti alcuni strumenti base di analisi complessa e di analisi funzionale. Tali strumenti mettono in grado gli studenti di assorbire concetti e tecniche fondamentali per qualunque indirizzo di studio o di lavoro futuro.

    OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

    Gli studenti saranno in grado di risolvere semplici problemi e di poter accedere a studi piu' avanzati in analisi complessa e analisi funzionale.

    PREREQUISITI

    Insegnamenti di Analisi, Geometria e Algebra dei primi due anni LT

    MODALITA' DIDATTICHE

    Impostazione classica: lezioni ed esercitazioni alla lavagna; esame scritto (esercizi) e orale (teoria ed esercizi). Viene data particolare importanza agli esercizi e conseguentemente alla parte scritta dell'esame.

    PROGRAMMA/CONTENUTO

    Analisi Complessa: serie di potenze e funzioni analitiche; derivazione complessa e funzioni olomorfe; integrazione complessa, teorema di Cauchy e primitive; classiche conseguenze del teorema di Cauchy; singolarita', teorema dei residui e applicazioni.

    Analisi Funzionale: spazi normati; operatori lineari; prodotti scalari; spazi di Hilbert e basi ortonormali; teorema della proiezione e della rappresentazione di Riesz; studio di importanti esempi: lo spazio L^2 e le serie di Fourier.

    TESTI/BIBLIOGRAFIA

    V.Villani - Funzioni di Una Variabile Complessa - Edizioni Scientifiche Genova 1971.

    I.Stewart, D.Tall - Complex Analysis, 2nd ed. - Cambridge U. P. 2018.

    H.Cartan - Elementary Theory of Analytic Functions of One or Several Variables - Dover Publ. 1995.

    A.I.Markushevich - Theory of Functions of a Complex Variable, parts I--III - A.M.S. Chelsea Publishing 2005.

    W.Rudin - Analisi Reale e Complessa - Bollati Boringhieri 1978.

    M.Reed, B.Simon - Functional analysis - Academic Press 1972.

    E.M.Stein, R.Shakarchi - Real Analysis - Princeton U. P. 2005.

    DOCENTI E COMMISSIONI

    Commissione d'esame

    ALBERTO PERELLI (Presidente)

    GIOVANNI ALBERTI

    SANDRO BETTIN (Presidente Supplente)

    LEZIONI

    INIZIO LEZIONI

    Quando iniziano le lezioni del III anno LT Matematica.

    Orari delle lezioni

    L'orario di tutti gli insegnamenti è consultabile su EasyAcademy.

    ESAMI

    MODALITA' D'ESAME

    Scritto e orale.

    Si consigliano gli studenti con certificazione di DSA, di disabilità o di altri bisogni educativi speciali di contattare il/la docente all’inizio del corso per concordare modalità didattiche e d’esame che, nel rispetto degli obiettivi dell’insegnamento, tengano conto delle modalità di apprendimento individuali e forniscano idonei strumenti compensativi.

    MODALITA' DI ACCERTAMENTO

    Valutazione esame scritto e orale.

    Calendario appelli

    Data Ora Luogo Tipologia Note
    09/01/2023 09:00 GENOVA Scritto
    11/01/2023 09:00 GENOVA Orale
    30/01/2023 09:00 GENOVA Scritto
    01/02/2023 09:00 GENOVA Orale
    05/06/2023 09:00 GENOVA Scritto
    07/06/2023 09:00 GENOVA Orale
    04/07/2023 09:00 GENOVA Scritto
    05/07/2023 09:00 GENOVA Orale
    12/09/2023 09:00 GENOVA Scritto
    13/09/2023 09:00 GENOVA Orale