CODICE | 106778 |
---|---|
ANNO ACCADEMICO | 2022/2023 |
CFU |
|
SEDE |
|
MODULI | Questo insegnamento è composto da: |
MATERIALE DIDATTICO | AULAWEB |
L'insegnamento si propone di presentare, nel modulo 1, i fondamenti teorici per formulare modelli a partire da dati sperimentali. Vengono fornite conoscenze di base nell'ambito dei modelli matematici, calcolo numerico, regolarizzazione, simulazione numerica di dispositivi e sistemi. Queste conoscenze verranno sfruttate nel secondo modulo, che fornisce le basi per la progettazione e lo sviluppo di algoritmi di classificazione e regressione. Lo studente viene introdotto ai concetti base del machine learning (modelli lineari, alberi di decisione, ensemble learning, reti neurali, ecc.) e aiutato a comprenderli attraverso esercizi svolti al calcolatore sfruttando le principali librerie software del linguaggio Python (NumPy, Pandas, SciKitLearn e TensorFlow).
Basi analisi matematica, geometria, statistica e programmazione.
Ricevimento: su appuntamento
Ricevimento: Il docente riceve su appuntamento, per prendere appuntamento è possibile contattare il docente tramite Microsoft Teams (preferibilmente) o tramite email a riccardo.berta@unige.it
ALBERTO OLIVERI (Presidente)
RICCARDO BERTA (Presidente Supplente)
EDOARDO RAGUSA (Presidente Supplente)
L'orario di tutti gli insegnamenti è consultabile su EasyAcademy.
Riguardo il modulo 1, l'esame prevede una prova orale articolata in due parti, ciascuna relativa a una metà del programma. Ogni parte consiste nell'esposizione di un argomento a scelta da parte dello studente e nell'esposizione di un argomento scelto del docente. Il punteggio compessivo è pari a 30.
Per il modulo 2, l'esame consiste in una interrogazione orale sugli argomenti presentati a lezione e nel commento delle esercitazioni svolte durante l'insegnamento. In particolare, lo studente deve dimostrare di aver compreso appieno i concetti alla base dello sviluppo di modelli basati sulle tecniche del machine learning e di saperli applicare alla progettazione e implementazione di applicazioni su dispositivi embedded.
Il voto complessivo è ottenuto effettuando la media dei punteggi ottenuti nei singoli moduli.
Durante l'orale, il docente chiederà allo studente di illustrare i concetti imparati a lezione. Lo studente dovrà dimostrare la propria conoscenza e comprensione degli argomenti dell’insegnamento, comunicando il proprio pensiero in maniera corretta, sintetica e con la terminologia tecnica adeguata. Per ogni concetto, lo studente dovrà descrivere le condizioni per la sua applicazione e gli eventuali vantaggi e svantaggi. Nel commentare le esercitazioni realizzate durante l’insegnamento, allo studente verrà richiesto di descrivere le scelte progettuali compiute, le possibili alternative scartate e le motivazioni.
Data | Ora | Luogo | Tipologia | Note |
---|---|---|---|---|
17/02/2023 | 09:00 | GENOVA | Esame su appuntamento | |
17/02/2023 | 09:00 | GENOVA | Esame su appuntamento | |
15/09/2023 | 09:00 | GENOVA | Esame su appuntamento | |
15/09/2023 | 09:00 | GENOVA | Esame su appuntamento |