Salta al contenuto principale della pagina

MATHEMATICAL MODELLING AND CONTINUOUS/DISCRETE SIMULATION

CODICE 98219
ANNO ACCADEMICO 2022/2023
CFU
  • 8 cfu al 1° anno di 10728 ENGINEERING TECHNOLOGY FOR STRATEGY (AND SECURITY)(LM/DS) - GENOVA
  • SETTORE SCIENTIFICO DISCIPLINARE MAT/07
    LINGUA Inglese
    SEDE
  • GENOVA
  • PERIODO Annuale
    MATERIALE DIDATTICO AULAWEB

    PRESENTAZIONE

    The course aims to provide a presentation of the most common partial differential equations (PDE) and their solution techniques through an analysis of various applications. The emphasis is devoted to second order PDE and the understanding of the specific techniques for elliptic, parabolic and hyperbolic cases.

    OBIETTIVI E CONTENUTI

    OBIETTIVI FORMATIVI

    Modeling and Simulation Fundamentals. Theory and Practice of Continuous Simulation and related Methodologies. Theory and Practice of Discrete Simulation and related Methodologies. Hybrid Simulation.

    OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

    Active participation in lectures and individual study will enable the student to:

    - be able to classify the main partial differential equations;

    - calculate the analytical solution of partial differential equations of elliptic, parabolic and hyperbolic types;

    - use the techniques of separation of variables, series and Fourier transform, special functions.

    MODALITA' DIDATTICHE

    The module is based on theoretical lessons.

    PROGRAMMA/CONTENUTO

    1. Introduction to partial differential equations (PDE). The elastic string and the transition from discrete systems to continuous systems. Second order partial differential equations. Classification and normal form. Elliptic, hyperbolic and parabolic PDE.

    2. Elliptic equations. The harmonic functions. Dirichlet and Neumann boundary conditions, the Poisson formula for the circle.

    3. Separation of variables technique. Series and Fourier transform. The Gibbs effect, the analysis of normal modes, the delta Dirac "function”. Bessel functions and problems in polar coordinates.

    4. Parabolic differential equations, diffusion and heat equations; descriptions in space and time domain.

    5. Hyperbolic equations: the equation of D'Alembert. The method of characteristics, the elastic membrane, the mechanical interpretation of the normal modes.

    6. Some concept on PDE of higher order: the biharmonic equation and its Cauchy problem. The vibration of bars and plates.

    7. Non homogeneous PDE and Green functions.

    TESTI/BIBLIOGRAFIA

    • A.N.Tichonov, A.A.Samarskij: Equazioni della Fisica matematica, Problemi della fisica matematica, Mosca,1982;
    • R. Courant, D. Hilbert, Methods of Mathematical Phisics vol I e II, Interscience, NY, 1973;
    • R. Bracewell, The Fourier Transform and Its Applications, New York: McGraw-Hill, 1999;
    • P. V. O’ Neil, Advanced engineering mathematica, Brooks Cole, 2003;
    • H. Goldstein, Meccanica Classica, Zanichelli, Bologna, 1985;
    • V. I. Smirnov. Corso di Matematica superiore, Vol. 3. MIR (1978).

    DOCENTI E COMMISSIONI

    Commissione d'esame

    ROBERTO CIANCI (Presidente)

    AGOSTINO BRUZZONE

    LEZIONI

    Orari delle lezioni

    L'orario di tutti gli insegnamenti è consultabile su EasyAcademy.

    ESAMI

    MODALITA' D'ESAME

    The examination mode consists of an oral test to ensure learning of the course content.

    MODALITA' DI ACCERTAMENTO

    The oral exam focuses on the learning of one or two subjects from those discussed in class.

    Calendario appelli

    Data Ora Luogo Tipologia Note
    09/01/2023 14:00 GENOVA Orale Aula B5 h. 14.00
    08/02/2023 14:00 GENOVA Orale Aula B5 h. 14.00
    06/06/2023 14:00 GENOVA Orale Aula B5 h. 14.00
    04/07/2023 14:00 GENOVA Orale Aula B5 h. 14.00
    14/09/2023 14:00 GENOVA Orale Aula B5 h. 14.00