CODICE 90530 ANNO ACCADEMICO 2023/2024 CFU 6 cfu anno 1 COMPUTER SCIENCE 10852 (LM-18) - GENOVA 6 cfu anno 1 COMPUTER ENGINEERING 11160 (LM-32) - GENOVA SETTORE SCIENTIFICO DISCIPLINARE INF/01 LINGUA Inglese SEDE GENOVA PERIODO 2° Semestre MATERIALE DIDATTICO AULAWEB PRESENTAZIONE Le reti sono ovunque e possono essere rappresentate come grafi. Questo insegnamento svelerà i pattern nascosti e le dinamiche delle reti in vari domini come i social network, internet e il web, i sistemi biologici e altro ancora. Gli studenti impareranno le basi teoriche dell'analisi delle reti e sperimenteranno, attraverso attività pratiche, ciò che è stato introdotto durante le lezioni. OBIETTIVI E CONTENUTI OBIETTIVI FORMATIVI Learning algorithms and techniques for large scale graph analytics, including centrality measures, connected components, graph clustering, graph properties for random, small-world, and scale free graphs, graph metrics for robustness and resiliency, and graph algorithms for reference problems. OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO At the end of the course, students will be able to: EXPLAIN universal properties of graphs that can be used to study large networks, regardless of their application domains EXPLAIN popular ranking algorithms UNDERSTAND which synthetic model represents best a real network DISCUSS the evolution of large networks in the presence of failures or contagions USE available libraries to IMPLEMENT exercises and put into practice the topics seen during lectures PREREQUISITI To be successful in this course, students should have knowledge on: Basic graph theory (definitions, paths, components, visits) Web (how it works, its structure) Programming (for the hands-on activities) MODALITA' DIDATTICHE Lectures, hands-on activities, and individual study. PROGRAMMA/CONTENUTO Students will learn how to analyze graphs of large size, even when it is impossible to visualize them because they are too big. Topics covered during the course are the following: Background on linear algebra and probability Complex networks introduction: examples from biology, sociology, economy, computer science Network topology (at local and global level): degree, centrality measures, connectivity, communities, and more Network models: random graphs, small-world, scale-free networks Web graph: Markov chains and random walk, ranking, search engines Robustness and fault tolerance of networks (random failures and target attacks) Dynamic evolution of networks (social contagion and epidemic spreading) Networks visualization using open source software tools TESTI/BIBLIOGRAFIA F. Menczer, S. Fortunato, C. A. Davis: A First Course in Network Science, Cambridge University Press, 2020 D. Easley and J. Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World (http://www.cs.cornell.edu/home/kleinber/networks-book/) A. Barabasi: Network Science (http://barabasilab.neu.edu/networksciencebook/) Scientific papers will be suggested during the course DOCENTI E COMMISSIONI MARINA RIBAUDO Ricevimento: Su appuntamento (in presenza o online) definito per email. Commissione d'esame MARINA RIBAUDO (Presidente) MATTEO DELL'AMICO GIOVANNA GUERRINI (Supplente) LEZIONI INIZIO LEZIONI See the official calendar of the MSc in Computer Science. The schedule for all the courses can be found on EasyAcademy. Orari delle lezioni L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy ESAMI MODALITA' D'ESAME Oral examination with discussion of the: practical exercises assigned during the course theory introduced during lectures MODALITA' DI ACCERTAMENTO During the oral exam students will be evaluated based on: the quality of the produced code and the completeness of the reports their understanding of the theoretical concepts covered in the course their presentation skills Calendario appelli Data appello Orario Luogo Tipologia Note 16/02/2024 09:00 GENOVA Esame su appuntamento 02/08/2024 09:00 GENOVA Esame su appuntamento 13/09/2024 09:00 GENOVA Esame su appuntamento 10/01/2025 09:00 GENOVA Esame su appuntamento