Scopo dell'insegnamento e' introdurre i concetti algebrici fondamentali, e le relative tecniche, utilizzati nello studio dell'aritmetica dei campi di numeri e, piu' in generale, degli anelli di Dedekind. Il corso fornisce prerequisiti algebrici necessari per affrontare questioni piu' avanzate in Teoria dei Numeri, Geometria Aritmetica ed argomenti collegati.
Lo studente arriverà a possedere una buona conoscenza delle nozioni fondamentali di Teoria Algebrica dei Numeri, quali fattorizzazione unica di ideali in domini di Dedekind, ramificazione di ideali primi in estensioni (eventualmente di Galois) di campi di numeri, gruppo delle classi di ideali in un dominio di Dedekind, numeri p-adici.
I corsi (in particolare quelli di algebra) dei primi due anni della laurea triennale in Matematica.
Modalità tradizionale.
STEFANO VIGNI (Presidente)
SANDRO BETTIN
FRANCESCO VENEZIANO (Supplente)
Prova orale sui contenuti del corso.