Salta al contenuto principale
CODICE 66176
ANNO ACCADEMICO 2024/2025
CFU
SETTORE SCIENTIFICO DISCIPLINARE MAT/07
LINGUA Inglese
SEDE
  • LA SPEZIA
PERIODO 1° Semestre
MATERIALE DIDATTICO AULAWEB

PRESENTAZIONE

The course aims to provide an introduction to foundations of continuum mechanics with applications to fluid mechanics and a presentation of the most common partial differential equations (PDE) and their solution techniques.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

L'insegnamento tratta le più importanti equazioni differenziali alle derivate parziali attraverso le loro più importanti fisiche matematiche nel settore del diporto artigianale.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

Active participation in lectures and individual study will enable the student to:

-learn the main fundamentals of continuum mechanics;

- be able to classify the main partial differential equations;

- calculate the analytical solution of some problems related to partial differential equations of elliptic, parabolic and hyperbolic types;

PREREQUISITI

prerequisites of the course are: linear algebra, geometry, mathematical analysis and rational mechanics.

MODALITA' DIDATTICHE

The module is based on theoretical lessons.

 

PROGRAMMA/CONTENUTO

1. Introduction to continuum mechanics

2. Kinematics and dynamics of marine craft

3. Added mass theory

4. Introduction to partial differential equations (PDE).  Classification and normal form. Elliptic, hyperbolic and parabolic PDE.

5. Series and Fourier transform.


6. Elliptic equations. The harmonic functions. Dirichlet and Neumann boundary conditions. Resolution of some related problems 


7. Parabolic differential equations. The diffusion and heat equations. Resolution of some related problems.


8. Hyperbolic equations. The equation of D'Alembert. The method of characteristics. Resolution of some related problems. 

TESTI/BIBLIOGRAFIA

  • Lewandowski: The dynamics of marine craft.
  • Milne-Thomson: Theoretical Hydrodinamics.
  • Newman: Marine Hydrodinamics.
  • L.I. Sedov: A course in continuum mechanics, Volume 1.
  • W. Jaunzemis: Continuum Mechanics.
  • A.N.Tichonov, A.A.Samarskij: Equazioni della Fisica matematica, Problemi della fisica matematica, Mosca,1982;
  • R. Courant, D. Hilbert, Methods of Mathematical Phisics vol I e II, Interscience, NY, 1973;
  • R. Bracewell, The Fourier Transform and Its Applications, New York: McGraw-Hill, 1999;
  • P. V. O’ Neil, Advanced engineering mathematica, Brooks Cole, 2003;
  • H. Goldstein, Meccanica Classica, Zanichelli, Bologna, 1985;
  • V. I. Smirnov. Corso di Matematica superiore, Vol. 3. MIR (1978).

DOCENTI E COMMISSIONI

Commissione d'esame

STEFANO VIGNOLO (Presidente)

ROBERTO CIANCI

MARCO GAIOTTI

LEZIONI

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

The examination mode consists of an oral test to verify learning of the course content.

MODALITA' DI ACCERTAMENTO

The assignment of the exam grade will take into account: knowledge and understanding of the covered topics, ability and clarity of exposition, ability to solve problems related to the covered topics

Calendario appelli

Data appello Orario Luogo Tipologia Note
08/01/2025 10:00 LA SPEZIA Orale
05/02/2025 10:00 LA SPEZIA Orale
11/06/2025 10:00 GENOVA Orale
02/07/2025 10:00 LA SPEZIA Orale
03/09/2025 10:00 LA SPEZIA Orale