Salta al contenuto principale
CODICE 65940
ANNO ACCADEMICO 2016/2017
CFU
SETTORE SCIENTIFICO DISCIPLINARE ING-INF/02
LINGUA Italiano
SEDE
PERIODO 2° Semestre
MATERIALE DIDATTICO AULAWEB

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Campo elettromagnetico nel vuoto: eq. di Maxwell per il vuoto, forme locali e forma globali; campo elettromagnetico in presenza di materia; circuiti a parametri concentrati; principi di Kirchhoff e loro limiti di validità; onde elettromagnetiche; circuiti a parametri distribuiti. 

MODALITA' DIDATTICHE

Le lezioni e gli esercizi vengono svolti dal docente in aula.

PROGRAMMA/CONTENUTO

  • Course organization and overview of its contents (1; 1)
  • Some comments on Newtonian, relativistic and quantum physics; the role of classical relativistic electrodynamics in modern physics; some links between classical relativistic and quantum electrodynamics in simple cases; some properties of photons; number and properties of photons involved in many engineering applications (3; 4)
  • Recalling some prerequisites: Lorentz force; different models for electric charge distributions; electric current and electric current density; conservation of charge; Maxwell's equations in the presence of charges in vacuum in integral form (2; 6)
  • Exercises related to scalar and vector fields, circulations, fluxes, differential operators, international system of units (for electromagnetic quantities); foundamental equations in the presence of charges in vacuum in differential form (3; 9)
  • Electromagnetic fields in the presence of ponderable media:
    1. Some considerations on the constituents of matter (0.5; 9.5)
    2. Drawbacks of the approach based on the microscopic Maxwell's equations and the need for macroscopic quantities and relationships among them (0.5; 10)
    3. Conduction current: charge carriers; carrier concentration; its value in solids (conductors, semiconductors, insulators), liquids (electrolytes), gases (e. g., ionosphere, plasma); convection currents; conduction currents in the presence of a single family of carriers; different contributions to the velocity of carriers: thermal, diffusion and drift velocity; Fick's first law; diffusion coefficient; carrier drift; carrier drift in the presence of an electric field; carrier mobility; some important values for the carrier mobility; effects of the temperature on the mobility and on carrier concentration; conductivity; its values in most important materials; unit of measures; first simple constitutive relation for the current density; ideal insulators; superconductors and perfect electric conductors; conduction current in the presence of more families of carriers; other types of current (1.5; 11.5)
    4. Exercises related to electrostatics: electric field and scalar potential due to point charges, line, surface or volume distributions of charges, dipoles and ideal dipoles, distributions of dipoles (1; 12.5)
    5. Electric polarization: electric dipole moments; electric dipole moment density (electric polarization or dipole moment per unit volume); surface and volume charge densities equivalent to the distribution of dipoles (1.5; 14)
    6. Some examples of dipole distributions; electronic polarization, atomic-ionic-molecular polarization and polarization due to the orientation of polar molecules; examples: Bohr's atomic model, ethylene molecule, water molecule; macroscopic effect of polarization-charge densities; generalization of Gauss theorem; generalization for time-varying electromagnetic fields; electric displacement; first generalization of Ampere-Maxwell law (3; 17)
    7. Exercises related to magnetostatics: fundamental laws; vector potential; vector potential due to surface or linear current densities (1; 18)
    8. Magnetic polarization: magnetic dipoles; ideal magnetic dipoles; magnetic dipole moment; magnetic dipole moment density per unit volume (magnetic polarization or magnetic dipole moment per unit volume); linear and surface current densities equivalent to the distribution of magnetic dipoles (1.5; 19.5)
    9. Some examples of magnetic dipole distributions; diamagnetic, paramagnetic and ferromagnetic materials; macroscopic effects of polarization-current densities; final form of Maxwell's equations (integral and differential forms); macroscopic fields; displacement current (1.5; 21)
  • Exercises: importance of curl and divergence equations; time-harmonic Maxwell's equations (1; 22)
  • Constitutive relations for ponderable media: linear-non linear; isotropic-anisotropic; dispersive-non dispersive in space and time; homogeneity-inhomogeneity in space and time; examples; integration of time-harmonic Maxwell curl equation and constitutive relations for linear, stationary and spatially non-dispersive media; effective permittivity (3; 25)
  • Boundary conditions at motionless interfaces between different media: conditions for the normal components of the electric dispacement, of the magnetic induction and of the Poynting vector; conditions for the tangential parts of the electric and magnetic fields (3; 28)
  • Extension to electromagnetic phenomena of the principle of energy conservation
    1. Poynting's theorem; physical meaning of the terms appearing in Poynting theorem (3; 31)
    2. Exercises: exchange between electromagnetic energy and mechanical or thermal energy; Nichols' disk; Joule effect in a cylindrical conductor (2; 33)
    3. Poynting theorem for time-harmonic fields (2; 35)
    4. Exercises: power losses due to Joule effect and to dielectric losses; thermal effects in microwave ovens; field amplitudes radiated by isotropic antennas in a lossless and homogeneous medium (3; 38)
  • A comment on the conservation of momentum and angular momentum in the presence of charged particles and electromagnetic fields (1; 39)
  • Uniqueness theorem for the electromagnetic field: general case and time-harmonc case; importance of boundary conditions and of initial conditions; electromagnetic boundary value problems and Cauchy problems (3; 42)
  • Electromagnetic waves
    1. Electromagnetic fields in simple homogeneous media without charge carriers and impressed current densities: wave equation (1; 43)
    2. Wave equation in one spece dimension: general form of its solution (2; 45)
    3. Progressive and regressive plane waves; their expressions for a generic direction of propagation (1; 46);
    4. Electromagnetic plane waves: TEM waves; general expressions for the electric and magnetic fields; speed of light as the velocity of propagation of electromagnetic plane waves; an additional comment on the special theory of relativiry (2; 48)
    5. Other possible waves: spherical waves (1; 49)
    6. Monochromatic plane waves; wavelength, wavevector, polarization of time-harmonic vectors and vector fields and its practical consequences (polarization division multiplexing, stereoscopic vision, etc.) (3; 52)
    7. Propagation of plane waves in the presence of absorption: low loss dielectric media and good conductors; attenuation; skin depth; velocity of propagation; some comments on the effects of dispersive media (3; 55)
    8. Reflection and transmission of a monochromatic plane wave at a plane interface: the case of orthogonal incidence (reflection and transmission coefficients; interference; behaviour of the magnitude of the electric field; standing waves; standing wave ratio; measures of the reflection coefficient and of the intrinsic impedance of a material; reflection by an ideal mirror; consequences and applications of interference: Young experiment, simple phased arrays) (3.5; 58.5)
    9. Fabry-Perot resonant cavity (qualitative description) and its applications (0.5; 59)
  • Some comments on the biological effects of electromagnetic fields, electromagnetic dosimetry, electromagnetic field measurements and safety standards to protect EU citizens (3; 62)

TESTI/BIBLIOGRAFIA

Note disponibili sul sito di Ingegneria Biomedica, da integrare e completare. G. Conciauro, L. Perregrini, ‘Fondamenti di onde elettromagnetiche’, McGraw-Hill, Milano, 2003.

DOCENTI E COMMISSIONI

Commissione d'esame

MIRCO RAFFETTO (Presidente)

GIAN LUIGI GRAGNANI

MATTEO PASTORINO

ANDREA RANDAZZO

LEZIONI

Orari delle lezioni

CAMPI ELETTROMAGNETICI

ESAMI

MODALITA' D'ESAME

Durante l'esame orale vengono poste tre domande, di cui almeno una di tipo teorico e almeno una formulata come un esercizio.

MODALITA' DI ACCERTAMENTO

Risultati d’apprendimento previsti: Il corso dovrebbe mettere gli studenti in grado di comprendere i principi dell’elettromagnetismo e di affrontare problemi non troppo complessi in tale materia.

Calendario appelli

Dati Ora Luogo Tipologia Note
29/05/2017 10:00 GENOVA Orale lunedì 9 gennaio 2017 - Aula E4, Nel pomeriggio E2 mercoledì 25 gennaio 2017 Aula E3 venerdì 10 febbraio 2017 Aula E3 lunedì 29 maggio 2017 - Aula E3 lunedì 19 giugno 2017 - Aula E3 venerdì 28 luglio 2017 - Aula E3 venerdì 15 settembre 2017 - Aula E3
14/06/2017 11:00 GENOVA Orale giovedì 22 dicembre 2016 - Aula G2b giovedì 12 gennaio 2017 - Aula G2b giovedì 2 febbraio 2017 - Aula G2b giovedì 16 febbraio 2017 - Aula E4 mercoledì 14 giugno 2017 - Aula G2b venerdì 14 luglio 2017 - Aula G2b lunedì 11 settembre 2017 - Aula G2b
19/06/2017 10:00 GENOVA Orale lunedì 9 gennaio 2017 - Aula E4, Nel pomeriggio E2 mercoledì 25 gennaio 2017 Aula E3 venerdì 10 febbraio 2017 Aula E3 lunedì 29 maggio 2017 - Aula E3 lunedì 19 giugno 2017 - Aula E3 venerdì 28 luglio 2017 - Aula E3 venerdì 15 settembre 2017 - Aula E3
14/07/2017 10:00 GENOVA Orale giovedì 22 dicembre 2016 - Aula G2b giovedì 12 gennaio 2017 - Aula G2b giovedì 2 febbraio 2017 - Aula G2b giovedì 16 febbraio 2017 - Aula E4 mercoledì 14 giugno 2017 - Aula G2b venerdì 14 luglio 2017 - Aula G2b lunedì 11 settembre 2017 - Aula G2b
28/07/2017 10:00 GENOVA Orale lunedì 9 gennaio 2017 - Aula E4, Nel pomeriggio E2 mercoledì 25 gennaio 2017 Aula E3 venerdì 10 febbraio 2017 Aula E3 lunedì 29 maggio 2017 - Aula E3 lunedì 19 giugno 2017 - Aula E3 venerdì 28 luglio 2017 - Aula E3 venerdì 15 settembre 2017 - Aula E3
11/09/2017 10:00 GENOVA Orale giovedì 22 dicembre 2016 - Aula G2b giovedì 12 gennaio 2017 - Aula G2b giovedì 2 febbraio 2017 - Aula G2b giovedì 16 febbraio 2017 - Aula E4 mercoledì 14 giugno 2017 - Aula G2b venerdì 14 luglio 2017 - Aula G2b lunedì 11 settembre 2017 - Aula G2b
15/09/2017 10:00 GENOVA Orale lunedì 9 gennaio 2017 - Aula E4, Nel pomeriggio E2 mercoledì 25 gennaio 2017 Aula E3 venerdì 10 febbraio 2017 Aula E3 lunedì 29 maggio 2017 - Aula E3 lunedì 19 giugno 2017 - Aula E3 venerdì 28 luglio 2017 - Aula E3 venerdì 15 settembre 2017 - Aula E3