Salta al contenuto principale
CODICE 61805
ANNO ACCADEMICO 2023/2024
CFU
SETTORE SCIENTIFICO DISCIPLINARE MAT/05
LINGUA Italiano
SEDE
  • GENOVA
PERIODO 2° Semestre
MATERIALE DIDATTICO AULAWEB

PRESENTAZIONE

L'insegnamento presenta contenuti di base in analisi matematica, a completamento di quelli gia' presentati nel precedente insegnamento di Calculus 1.

In particolare verranno fornite alcune conoscenze di base sulle serie di funzioni e sul calcolo differenziale per funzioni reali e vettoriali di piu' variabili reali.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Acquisire i concetti fondamentali relativi allo sviluppo in serie di Taylor e di Fourier di una funzione e i rudimenti del calcolo differenziale in più variabili.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

Il corso si propone di fornire le nozioni elementari sulle serie numeriche e di potenze e le conoscenze di base del calcolo differenziale per le funzioni reali e vettoriali di più variabili reali.

Alla fine del corso, gli studenti dovrebbero essere in grado di:                                                                                                                            -svolgere correttamente calcoli elementari e standard riguardanti serie numeriche e di potenze, derivate parziali o direzionali,  

-saper calcolare gli sviluppi in serie di Fourier,

-saper determinare massimi e minimi per funzioni di più variabili.

PREREQUISITI

Insegnamento di Calcolo differenziale ed integrale 1.

MODALITA' DIDATTICHE

Tradizionali: lezioni frontali di teoria ed esercitazioni, svolte dai docenti alla lavagna. Sono previste durante il semestre alcune esercitazioni guidate.

La frequenza alle lezioni e' consigliata.

PROGRAMMA/CONTENUTO

Sviluppi di Taylor: sviluppi di Taylor di funzioni in una variabile reale. Resto di Lagrange e resto di Peano.

Serie Serie numeriche. Serie a termini di segno costante. Criteri di convergenza. Serie a segni alterni. Criteri di convergenza. Convergenza assoluta. 
Serie di potenze Serie di Taylor. Serie di potenze. Intervallo di convergenza. Derivazione e integrazione termine a termine. 
Funzioni vettoriali Limite. Continuità. Cenni alle curve e loro rappresentazione parametrica.  
Funzioni di più variabili Insiemi di livello. Rappresentazione grafica. Limite in un punto, limite all'infinito. Limite in un punto lungo una direzione. Continuità. Proprietà delle funzioni continue. Teorema di Weiestrass e Teorema dei valori intermedi.
Calcolo differenziale per funzioni di più variabili Derivate in una direzione assegnata. Gradiente. Differenziabilità e teorema del differenziale. Piano tangente. Derivata della funzione composta.
Applicazioni del calcolo differenziale. Matrice Hessiana. Massimi e minimi relativi: condizioni necessarie e condizioni sufficienti. Ricerca del massimo assoluto. Punti stazionari e loro classificazione. Estremi vincolati.
 

Questo insegnamento è previsto per il curriculum: METODOLOGICO

TESTI/BIBLIOGRAFIA

O. Caligaris - P. Oliva, Analisi Matematica I e II, ECIG
J.P. Cecconi - G. Stampacchia, Analisi Matematica I e II, Liguori
T. Zolezzi, Analisi matematica II, Dispense 
Libri di esercizi svolti:
J.P. Cecconi - L. Piccinini - G. Stampacchia, Esercizi di Analisi Matematica I e II, Liguori
M. Chicco - F. Ferro, Esercizi svolti di Analisi Matematica II, ECIG
S. Salsa - A. Squellati, Esercizi di Matematica - Calcolo infinitesimale, volume 2, Zanichelli

DOCENTI E COMMISSIONI

Commissione d'esame

FILIPPO DE MARI CASARETO DAL VERME (Presidente)

SANDRO BETTIN

TOMMASO BRUNO (Presidente Supplente)

LEZIONI

INIZIO LEZIONI

In accordo con il calendario didattico approvato dal Consiglio dei Corsi di Studio in Informatica

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

L'esame consiste solo di una prova scritta.

MODALITA' DI ACCERTAMENTO

Nella prova scritta occorre risolvere alcuni esercizi, relativi agli argomenti trattati a lezione. La durata della prova e' di due ore e mezza, ed e' possibile consultare gli appunti ed i libri di testo.

Calendario appelli

Data appello Orario Luogo Tipologia Note
19/06/2024 14:30 GENOVA Scritto
10/07/2024 09:30 GENOVA Scritto
16/09/2024 09:30 GENOVA Scritto
10/01/2025 09:30 GENOVA Scritto
31/01/2025 09:30 GENOVA Scritto

ALTRE INFORMAZIONI

Questo insegnamento è previsto per il curriculum: metodologico.
È richiesta l'iscrizione agli esami.