L'obiettivo principale dell'insegnamento di Analisi Matematica 1 è quello di fornire agli studenti gli elementi fondamentali del calcolo differenziale e integrale per le funzioni di una variabile, con un cenno alla teoria delle equazioni differenziali ed al calcolo differenziale per funzioni di più variabili.
Fornire i fondamenti del calcolo differenziale in una variabile e conoscenza operativa di alcuni strumenti matematici di base, mantenendo il dovuto rigore metodologico. Fornisce inoltre i primi strumenti di modellizzazione matematica: il calcolo integrale, le equazioni differenziali ordinarie e la teoria di base delle funzioni di due variabili
I principali risultati di apprendimento attesi sono
Insiemi numerici, equazioni e disequazioni, geometria analitica, trigonometria.
Le lezioni si svolgeranno in presenza.
Attraverso il progetto di innovazione della didattica adottato dal Corso di Studio in Ingegneria Meccanica, saranno utilizzati strumenti innovativi atti ad un apprendimento attivo dello studente. Lo scopo è quello di accrescere le competenze degli studenti attraverso nuove metodologie di apprendimento, dall'e-learning al team work, attraverso esperienze che accrescano la partecipazione dello studente mediante un livello comunicativo più elevato e rendano lo studente più consapevole ed autonomo
Funzioni di una variabile reale. Numeri reali, retta orientata. Piano cartesiano, grafici delle funzioni elementari. Operazioni sulle funzioni e loro significato grafico. Monotonia. Composizione ed invertibilità. Potenze, esponenziali e logaritmi. Estremo superiore ed inferiore. Successioni e serie: concetti ed esempi elementari. Limiti di funzioni. Infinitesimi ed infiniti. Funzioni continue e loro proprietà locali e globali. Linearizzazione, derivate, regole di derivazione. Derivate delle funzioni elementari. Segno delle derivate, monotonia e convessità. Teoremi di Rolle, Cauchy, Lagrange e de l'Hôpital. Sviluppi di Taylor e applicazioni allo studio dei punti stazionari. Integrali indefiniti e definiti.
Funzioni di due variabili reali. Continuità, derivate direzionali e parziali, gradiente. Differenziabilità e piano tangente. Insiemi di livello. Massimi e minimi liberi: derivate del secondo ordine e criterio dell’Hessiano. Teorema di Schwarz.
Equazioni differenziali. Equazioni a variabili separabili, equazioni lineari: metodi risolutivi. Sistemi di equazioni differenziali. Esistenza e unicità per il problema di Cauchy. Integrale generale per sistemi lineari.
Ricevimento: Su appuntamento, da concordare tramite e-mail
EDOARDO MAININI (Presidente)
VALENTINA BERTELLA
ALBERTO DAMIANO
MAURIZIO CHICCO (Presidente Supplente)
https://corsi.unige.it/8720/p/studenti-orario
L'esame consiste in:
In alternativa è possibile sostenere delle prove parziali (una al termine di ciascun semestre)
Per partecipare ad un appello d'esame occorre iscriversi entro la scadenza sul sito https://servizionline.unige.it/studenti/esami/prenotazione