Salta al contenuto principale
CODICE 108726
ANNO ACCADEMICO 2023/2024
CFU
SETTORE SCIENTIFICO DISCIPLINARE ING-IND/24
LINGUA Inglese
SEDE
  • GENOVA
PERIODO 2° Semestre
MODULI Questo insegnamento è un modulo di:
MATERIALE DIDATTICO AULAWEB

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

The course aims to provide students with an overview of the main chemical processes for the clean production of energy, with particular attention to perspectives and strategies for energy transition, hydrogen as energy vector, thermochemical conversions of biomass, fuel cells, electrolysers and batteries.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

The course provides the basic knowledge related to the different chemical processes for the production of clean energy and hydrogen and energy storage. The course provides tools and methods to properly distinguish and evaluate the recent technologies on the market for energy transition.

The course is divided in three parts, related to:

1) low temperature hydrogen production by electrolyzers and energy storage systems (batteries and thermodynamic-cycle based).

2) high temperature electrochemical cells (fuel cells and electrolyzers), carbon capture and applications.

3) thermochemical conversion of biomass.

Attendance and active participation in the proposed training activities (lectures, exercises and simulation, educational visits) and individual study will allow the student to:

  • define the proper technology to be proposed depending on the case requirements and operating conditions;
  • analyze advantages and disadvantages of the different chemical processes to produce clean energy and energy vectors;
  • propose the best technologies in terms of minimum pollution, possibility of carbon capture, reduction of operating risk.

 

MODALITA' DIDATTICHE

The module provides frontal lectures with the help of slides provided by the teachers. Online lectures will not be available.

The organization of the course is aimed at encouraging the learning and discussion of specific design situations involving the comparison of the different technologies.The multidisciplinary nature of the teaching module and the fact that it deals with different speakers encourage dynamic learning that also promotes the acquisition of transversal skills.

Working students and students with SLD, disability or other special educational needs are advised to contact the teacher at the beginning of the course to agree on teaching and examination methods that, in compliance with the teaching objectives, take into account individual learning modalities.

PROGRAMMA/CONTENUTO

Main contents:

Part 1: Electrolyzers and storage systems:

  • Proton Exchange Membrane Water Electrolyzers (PEMWE), Alkaline electrolysers (AEL), Anion Exchange Mambrane Water electrolyzers (AEMWE). Advantages and disadvantages, materials, environmental impact, state of the research and industrial applications. Simple models.
  • Redox Flow Batteries (vanadium and organic), zinc and iron flow batteries, lithium batteries.
  • Storage systems based on Thermadynamic cycles (air and carbon dioxide)

Part 2: Fuels cells /electrolizers

  • Operating principles, theoretical models, and experimental data of electrochemical cells in "Gas to Power" and "Power to Gas" applications.
  • Types of fuel cells and applications (MCFC, SOFC, etc)

Part 3: Thermochemical conversion

  • Biomass characterization; combustion, pyrolysis, and gasification reactions;
  • types and characteristics of thermochemical reactors.
  • Valorisation of waste 2.0.
  • Visit to a plant

 

TESTI/BIBLIOGRAFIA

The teaching material used during the classes will be available in the Aulaweb of the teaching. The notes taken during the lessons and the material in the Aulaweb are sufficient for the preparation of the exam, but the following books are suggested as support and in-depth texts:

- “Fuel Cells Handbook (Seventh Edition)by EG&G Technical Services, DE-AM26-99FT40575, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia, 2004.

- “Le energie rinnovabili”, Andrea Bartolazzi. Hoepli, Milano, 2010.

- “The Science of Biomass Energy (Science of Renewable Energy)”. Cecilia Pinto Mccarthy. ISBN-10 ‏ : ‎ 1682823016.

DOCENTI E COMMISSIONI

LEZIONI

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

The final exam will consist of a written exam containing 6 questions (2 for each subsection of the module).

The grade achieved by the student will be the average of the marks awarded in the two modules in which the teaching is divided.

There are 3 exam dates for the 'summer' session (June, July, September) and 2 exam dates for the 'winter' session (January and February). No extraordinary dates are granted outside the periods indicated by the Scuola Politecnica, with the exception of students who have not included educational activities in the curriculum during the current academic year.

MODALITA' DI ACCERTAMENTO

Written questions on:  design calculations or theoretical principles of a chosen technology for clean energy production /storage /hydrogen production / biomass conversion for energy recovery.

The written exam is used to evaluate the knowledge of the student on the principal design criteria of the proposed technology; the ability to contestualize it into a case study and the ability  to discriminate between different technologies and discussing advantages and disadvantages, also in terms of safety and environmental impact.

Calendario appelli

Dati Ora Luogo Tipologia Note
03/06/2024 10:30 GENOVA Scritto
10/07/2024 10:30 GENOVA Scritto
13/09/2024 10:30 GENOVA Scritto