Salta al contenuto principale
CODICE 72288
ANNO ACCADEMICO 2024/2025
CFU
SETTORE SCIENTIFICO DISCIPLINARE MAT/05
LINGUA Italiano
SEDE
  • SAVONA
PERIODO 1° Semestre
MATERIALE DIDATTICO AULAWEB

PRESENTAZIONE

Nell'insegnamento di Analisi Matematica 2 vengono illustrati gli argomenti essenziali per lo studio delle funzioni di più variabili. In particolare viene trattato il calcolo differenziale, l’integrazione multipla e curvilinea.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

L'insegnamento fornisce i principali strumenti dell'analisi matematica per funzioni di due o più variabili e le nozioni di base su spazi di probabilità e variabili aleatorie e di sviluppare la capacità di comprendere ed esprimersi usando, per le applicazioni, il linguaggio introdotto.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

Lo scopo dell'insegnamento e' la conoscenza di strumenti basilari dell'Analisi Matematica utili nella modelllizzazione di fenomeni fisici, la a capacità di impostare e risolvere problemi con metodo intuitivi e deduttivi e di riconoscere ed utilizzare gli opportuni strumenti matematici nella risoluzione di problemi in ambito fisico.

Al termine dell’insegnamento lo studente sarà in grado di:

1. Enunciare i concetti (teoremi, definizioni) argomento del corso (es.: l'insieme di livello, le derivate parziali, l'ottimizzazione libera e vincolata, l'integrazione curvilinea e su un volume)

2. Interpretare fisicamente e geometricamente i concetti basilari dell’analisi matematica

3. Impostare la risoluzione di problemi con approccio intuitivo

4. Selezionare gli opportuni strumenti matematici da impiegare nella risoluzione di problemi

5. Risolvere problemi con approccio deduttivo

MODALITA' DIDATTICHE

Il corso consiste di 36 ore di lezioni e 24 di esercitazioni. Durante le lezioni vengono presentati gli argomenti del programma del corso con definizioni e teoremi ed alcune dimostrazioni, utili per la comprensione degli argomenti e per  sviluppare capacità di ragionamento logico-deduttivo da parte dello studente. Ciascun argomento teorico viene corredato da facili esempi e qualche esercizio. Le ore di esercitazione sono dedicate allo svolgimento di esercizi il cui scopo è approfondire la conoscenza da parte dello studente dell'argomento teorico trattato e prepararlo alla prova di esame. Durante il corso si terranno tre esercitazioni guidate nelle quali lo studente potrà autovalutare il proprio livello di apprendimento.

Lo studente potrà avvalersi del materiale messo a disposizione su Aulaweb.

PROGRAMMA/CONTENUTO

Richiami sulla struttura di spazio vettoriale di R^n. Topologia di R^n.

Funzioni di più variabili. Insiemi di livello. Continuità e differenziabilità. Derivate direzionali e parziali. Dervate di ordine superiore. Teorema di Schwartz. Formula di Taylor di ordine n con il resto di Peano e di Lagrange. Richiami sulle forme quadratiche. Estremi liberi. Condizione necessaria del 1° ordine e sufficienti del secondo ordine. Teorema della funzione implicita. Trasformazioni di coordinate. Estremi vincolati.

Sistemi di equazioni differenziali non lineari. Problema di Cauchy e teorema di esistenza e unicità della soluzione locale e globale. Integrali doppi e tripli. Domini normali in R^2. Formule di riduzione per integrali doppi. Teorema di cambio di variabili per integrali. Formule di riduzione per fili e per sezioni.

Curve in R^n. Integrale di linea.

Campi vettoriali. Campi vettoriali irrotazionali e conservativi. Formule di Gauss - Green nel piano. Teorema della divergenza nel piano.

TESTI/BIBLIOGRAFIA

C. Canuto, A. Tabacco, "Analisi Matematica II", Springer, 2014.

M. Bramanti, C. Pagani, S. Salsa. “Analisi matematica 2”, Zanichelli, 2009.

S. Salsa, A. Squellati. “Esercizi di Analisi matematica 2”, Zanichelli 2011.

DOCENTI E COMMISSIONI

LEZIONI

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

L'esame consiste in una prova scritta della durata di due ore. La commissione si riserva la possibilità, in seguito alla prova scritta, di convocare gli esaminandi per un colloquio orale.

Sono previste due prove in itinere durante il periodo di lezioni che, se superate, sono sostitutive della prova d'esame

MODALITA' DI ACCERTAMENTO

L’esame si pone l’obiettivo di verificare le competenze acquisite dallo studente e attese quali obiettivi formativi del corso.  La prova scrittta è costituita da esercizi che necessitano di scegliere ed applicare lo strumento matematico più adeguato per la sua risoluzione e richiedono la capacità, da parte dello studente, di costruire un concatenamento logico applicando in sequenza risultati teorici visti a lezione. Gli studenti dovranno risolvere gli esercizi proposti giustificando i passaggi significativi richiamando i teoremi e definizioni necessari e precisando l'interpretazione fisica e geometrica del problema.

La  valutazione finale tiene conto della qualita' dell'esposizione e la capacita' di ragionamento.

ALTRE INFORMAZIONI

Il corso presuppone la conoscenza dei  contenuti di Analisi Matematica 1 ed Elementi di Matematica per l'Ingegneria