Salta al contenuto principale
CODICE 60270
ANNO ACCADEMICO 2024/2025
CFU
SETTORE SCIENTIFICO DISCIPLINARE ING-INF/05
SEDE
  • GENOVA
PERIODO 2° Semestre
MATERIALE DIDATTICO AULAWEB

PRESENTAZIONE

L'insegnamento illustra i concetti base della Business Analytics con particolare riferimento agli approcci per la modellistica statistica dei dati e l’analisi predittiva, utilizzando metodologie basate sul machine learning per la soluzione di problemi applicativi e per il supporto alle decisioni in ambito industriale, gestionale ed economico.

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

L'insegnamento illustra i concetti base della Business Analytics con particolare riferimento agli approcci per la modellistica statistica dei dati e l’analisi predittiva, utilizzando metodologie basate sul machine learning per la soluzione di problemi applicativi e per il supporto alle decisioni in ambito industriale, gestionale ed economico.

OBIETTIVI FORMATIVI (DETTAGLIO) E RISULTATI DI APPRENDIMENTO

Lo studente acquisirà capacità progettuali di analisi dati in campi applicativi industriali e gestionali. In particolare lo studente sarà in grado di progettare un sistema di analisi predittiva e valutarne le prestazioni.

PREREQUISITI

Conoscenze di base di statistica, probabilità, analisi e rappresentazione dei dati.

Conoscenza di base del linguaggio di programmazione Python o similari.

MODALITA' DIDATTICHE

L'insegnamento alterna lezioni frontali con sessioni di esercitazioni pratiche al calcolatore utilizzando strumenti di analisi dati (ad es. Scikit-learn) basati sul linguaggio di programmazione Python.

PROGRAMMA/CONTENUTO

Richiami di statistica multivariata e di elementi di teoria della decisione

Descriptive Analytics, Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics

Modelli supervisionati e non supervisionati

Association Pattern Mining

Cluster Analysis

Metodi basati su regole e alberi di decisione

Metodi basati su kernel

Cenni alle reti neurali

Cenni ai metodi per dati strutturati e semistrutturati

Metodi di valutazione dei modelli

Applicazioni e casi di studio

TESTI/BIBLIOGRAFIA

Materiale fornito dal docente durante le lezioni.

Per approfondimenti:

C.C.Aggarwal, Data mining: the textbook. Springer, 2015.

M.J.Zaki, M.Wagner Jr., Data Mining and Machine Learning: Fundamental Concepts and Algorithms. Cambridge University Press, 2019.

T.Hastie, R.Tibshirani, J.Friedman, The Elemsnts of Statistical Learning, Springer, 2009 (2nd Ed.)

DOCENTI E COMMISSIONI

LEZIONI

Orari delle lezioni

L'orario di questo insegnamento è consultabile all'indirizzo: Portale EasyAcademy

ESAMI

MODALITA' D'ESAME

Esame orale. Lo studente svilupperà in autonomia (singolarmente o in cooperazione con altri studenti) un caso di studio a scelta, tra quelli proposti dal docente, utilizzando le metodologie illustrate durante il corso. 

MODALITA' DI ACCERTAMENTO

L’esame orale verterà sulla discussione del caso di studio.