Lectures are given in English in presence of international students. Lectures are in Italian only if all students in class understand this language.
Learning theoretical foundations, techniques and methodologies for the representation and manipulation of solid objects, 2D and 3D scalar surfaces and fields. Representations of solid objects based on contour, based on decompositions, constructive; Representations of surfaces and scalar fields by triangular and tetrahedric grids; Multi-resolution techniques; Morphological modeling of shapes and scalar fields. Reference applications: computer graphics, scientific visualization, CAD systems, geographic information systems, virtual reality.
In presence
Background Notions
Models of discrete geometric shapes
Representations for cell and simplicial complexes
Discrete differential geometry
Curves and surfaces
Geometry processing
Notes and slides made available on Aulaweb. Notes contain references to reference books and articles for further reading.
Some recomended books:
M. Mantyla, An Introduction to Solid Modeling, Computer Science Press, 1988
M.K. Agoston, Computer Graphics and Geometric Modeling, Springer Verlag, 2005
M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, B. Lévy, 2010, Polygon Mesh Processing, A.K. Peters, ISBN 978-1-56881-426-1
Ricevimento: Appointment by email to enrico.puppo@unige.it During class period appointments for groups can be set by posting on the course forum on AulaWeb.
ENRICO PUPPO (President)
CHIARA EVA CATALANO
FRANCESCA ODONE
The class will start according to the academic calendar.
Oral.
Seminar on a subject related to the program. This seminar will contribute for a 20% of final mark; oral exam will contribute for 80%.
Depending on the level of skill of the class in computer programming, the seminar may be substituted with a practical project; in this case the project will contribute for about 40% of final mark and oral exam wil contribute for 60%.
This course will rely on tools from calculus in multiple variables instrduced in the Caluculus courses of second year of the undergraduate program and tools from numerical analysis such as resolution of linear systens and functional minimization.
This course also makes use of concepts in algebraic topology and differential geometry that are introduced autonomously. Previous knowledge of such concepts may help, which can be obtained from courses such as Istituzioni di Fisica Matematica 1 and/or Geometria Differenziale and/or Trattamento Numerico di Equazioni Differenziali.