Skip to main content
CODE 39621
ACADEMIC YEAR 2019/2020
CREDITS
SCIENTIFIC DISCIPLINARY SECTOR CHIM/02
LANGUAGE Italian
TEACHING LOCATION
  • GENOVA
SEMESTER 2° Semester
TEACHING MATERIALS AULAWEB

AIMS AND CONTENT

LEARNING OUTCOMES

The course aims to provide students with an in-depth knowledge of the physico-chemical properties of conjugated organic materials and hybrid / organic systems that constitute a class of materials of increasing technological interest for their use in photonics, optoelectronics and electronics to molecular scale.

AIMS AND LEARNING OUTCOMES

This teaching, in relation to the acquisition of knowledge in the chemical and physical field, aims to provide the tools for the student to acquire a thorough understanding of the chemical and physical properties of conjugated organic materials and hybrid/organic systems. Since the latter are a class of materials from the growing applicative/technological interest for their use in the field of photonics, optoelectronics and molecular electronics.

In addition, the aim of the course is to develop the skills and competences of the student, enabling him to elaborate in a multidisciplinary approach the basic concepts previously acquired in the chemical and physical field.

TEACHING METHODS

Traditional lessons

SYLLABUS/CONTENT

Recall for chemical bonds and intermolecular forces.

  •     Ionic bond:  Madelung constant, Ewald sum.
  •     Covalent bond: description according to MO and VB model, variational theorem, examples.
  •     Metallic bond.
  •     Intermolecular forces: Keesom, Debye and London. Development of a simple model for describing dispersive interaction forces.

Theoretical treatment of conjugated systems.

  • Effective Hamiltonians: meaning and origin, application of the Huckel model for describing conjugate systems, advantages and limitations.
  • Jahn-Teller effect, Symmetry and Electron-phonon interaction (hints).
  • Proof of Fermi-Dirac distribution.
  • Proof of the theorem of blocks and recalls of concepts typical of solid state physical chemistry (density of states, reciprocal pattern and Brillouin zones).
  • Comparison between the "bottom up" and "top down" approach in describing a one-dimensional system (reference to a conjugate 1D system).
  • Electronic properties of an infinite polyene / annulene: transition from semiconductor metal. Peierls distortion. SSH model. 2D conjugate system: graphite.

Organic vs inorganic semiconductors.

  • General properties, conductivity, effective mass, charge load mobility.
  • Deriving the law of mass action.
  • Dropping, comparison between the case of organic and inorganic semiconductor.
  • Solitones, polarones, bipolar and excitons.
  • Charge transport in Organic Semiconductors (hints): Developnet of a simple model to identify the main factors that characterize the transport process (metal / organic interface). Importance of bulk organization and intermolecular interactions.
  • Potential contact between organic / metal and organic / semi-conductor interfaces.
  • Devices: OLED and Solar Cells. Operation, theoretical criteria for choosing the conjugated system to be used in the device. Examples of modeling.

Depending on the time available in the development of the course, the following topics may also be included:

    Time-dependent processes

  •         Introduction: Jablonski Diagram
  •         Schroedinger time-dependent equation (hints).
  •         Equation of liouville and master equation.
  •         Deriving from Fermi's golden rule: examples.
  •         Time correlation function: examples.
  •         Electron-phonon interaction.

    Energy or electron transfer processes

  •         Marcus's theory.
  •         Foerster and Dexter theory.

RECOMMENDED READING/BIBLIOGRAPHY

Notes (in Italian) will be provided.

For the general part related to the properties of the solid state

- C. Kittel Introduction to solid state physics

TEACHERS AND EXAM BOARD

Exam Board

MAURIZIO FERRETTI (President)

MASSIMO OTTONELLI (President)

MARINA ALLOISIO

CRISTINA ARTINI

MARCELLA PANI

LESSONS

Class schedule

The timetable for this course is available here: Portale EasyAcademy

EXAMS

EXAM DESCRIPTION

The oral exam is always conducted by two tenured professors and lasts at least 30 minutes. With these modalities, given that at least one of the two professors has many years of experience in the discipline, the commission is able to verify with high accuracy the achievement of the educational objectives of teaching. When these are not reached, the student is invited to deepen the study and to make use of further explanations from the titular teacher.

ASSESSMENT METHODS

The student's ability to apply the methods / concepts studied during the course is evaluated, in the description of the properties of conjugated systems and semiconductors through the analysis of specific cases (including general cases) that will allow a verification of the depth, of the coherence of the knowledge and methodology described in the course.

Exam schedule

Data appello Orario Luogo Degree type Note
28/01/2020 10:00 GENOVA Orale
18/02/2020 10:00 GENOVA Orale
16/06/2020 10:00 GENOVA Orale
30/06/2020 10:00 GENOVA Orale
21/07/2020 10:00 GENOVA Orale
08/09/2020 10:00 GENOVA Orale
06/10/2020 10:00 GENOVA Orale