Different robotic agents can be employed for achieving a set of objectives via cooperative activities. From example, multiple sensoride vehicles can be employed for distributed area exploration, monitoring or surveying, while cooperating multi-mobile manipulators can be employed for manipulating, transporting and assembling objects. This course will present an efficient task-priority based control framework and its extension for the use in a cooperative context.
The goal of the course is to first introduce a modern task-priority based control of complex robotic systems such as dual arm robots, mobile manipulators, floating underwater vehicle-manipulator systems are characterized by a high number of degrees of freedom. Then the same framework is extended to the case where multiple robots need to work together, for example to manipulate and transport objects cooperatively.
At the end of the course the student will be able to design a modern task-priority kinematic controller. In particular, the student will be able to:
For the 4 CFU version, students are required to know the fundamentals of kinematics.
The teaching modalities of this course are as follows. Approximately 20 hours are used to present the syllabus contents through regular lessons. The remaining hours are used for laboratory activities. In particular, a series of exercises of increasing difficulty are given and the class hours are exploited to solve them with the teacher's help. The exercises are carried out within a MATLAB simulation environment made available by the teacher.
A continous assessment will be made on the exercises developed during the lessons.
Lessons attendance is mandatory.
For the 4 CFU version, the course will cover the following topics:
The 6 CFU version of the course provides, at the beginning, the following additional content
The notes of the course will be available on Aulaweb and cover all the contents of the course.
For further readings, students can read the following books and papers:
Ricevimento: When: On appointment. Where: Robotics & Automation Lab, 2nd floor Building E, Via Opera Pia 13.
ENRICO SIMETTI (President)
MICHELE AICARDI
GIUSEPPE CASALINO
Development of a project assigned during the course. The project is carried out in the MATLAB simulation environment used during the laboratory lessons. The project requires the development of a task priority controller for a robotic system employed in a specific case study. The exam will be based on the discussion of the project and of the content covered during the lessons.
At the end of the course, the student must be able to design a task priority controller for a given robotic system. This skill is evaluated through the discussion of the developed project (70%) and the continous assessment during the lessions (30%).
The following items will be part of the evaluation: