CODE 98216 ACADEMIC YEAR 2021/2022 CREDITS 5 cfu anno 2 INGEGNERIA ELETTRONICA 8732 (LM-29) - GENOVA 5 cfu anno 2 ENGINEERING TECHNOLOGY FOR STRATEGY (AND SECURITY) 10728 (LM/DS) - GENOVA SCIENTIFIC DISCIPLINARY SECTOR ING-INF/01 LANGUAGE Italian (English on demand) TEACHING LOCATION GENOVA SEMESTER 1° Semester TEACHING MATERIALS AULAWEB OVERVIEW The course presents algorthms and strategies for autonomous intelligent agents that move and interact with an unknown space. In particular, the space is represented by a virtual world created through video games technology. AIMS AND CONTENT LEARNING OUTCOMES The course provides algorithms and strategies to develop autonomous agents using a game engine. AIMS AND LEARNING OUTCOMES The aim of the course is to provide the basis for the design and development of software algorithms capable of autonomously acting within a virtual world. The student is introduced to different concepts of artificial intelligence (path finding, decision tree, reinforcement learning, etc.) and supported through extensive exercises during lectures. The course aims to train a professional figure capable of designing and implementing complex software applications using video game technologies and artificial intelligence algorithms. PREREQUISITES The students should have advanced knowledge of programming and statistic. TEACHING METHODS The course is composed of a set of frontal lessons and a set of practice sessions. During the frontal lesson, the teacher presents the topics providing also examples of live code that are tested on a real game engine (Unity 3D). Students can use their own laptops during the lecture in order to reproduce what is proposed by the teacher. During the practice sessions, the students have to face up with real problems that they should solve by applying the techniques learnied during the lectures. SYLLABUS/CONTENT The titles of the main contents discussed during frontal lessons are provided in the following list. Each title is associated with a relevatn link where it is possible to obtain the lecture notes: 01 - Introduction [LINK] 02 - Unity Engine Recap [LINK] 03 - Path Finding [LINK] 04 - Steering [LINK] 05 - Influence Maps [LINK] 06 - Tree Search [LINK] 07 - Tic-Tac-Toe [LINK] 08 - Reinforcement Learning [LINK] 09 - Uncertain Reasoning [LINK] 10 - Genetic Algorithms [LINK] 11 - Decision Trees [LINK] 12 - Conversational Agents [LINK] RECOMMENDED READING/BIBLIOGRAPHY Lecture notes (from AulaWeb) Books (as references): 01 - B. Tristem, M. Geig. Unity Game Development in 24 Hours. Sams Teach Yourself 02 - J. Hocking. Unity in Action: Multiplatform Game Development in C# with Unity 5. Manning 03 - M. Buckland. Programming Game AI By Example. Jones & Bartlett Learning. 04 - I. Millington, J. Funge. Artificial intelligence for games. CRC Press. 05 - S. Rabin. AI Game Programming Wisdom, Vol. 1-4, Charles River Media 06 - S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall 07 - G. N. Yannakakis, J. Togelius. Artificial Intelligence and Games. Springer. TEACHERS AND EXAM BOARD RICCARDO BERTA Ricevimento: Appointments. Writing to riccardo.berta@unige.it Exam Board RICCARDO BERTA (President) ALESSANDRO DE GLORIA LESSONS LESSONS START https://corsi.unige.it/8732/p/studenti-orario Class schedule The timetable for this course is available here: Portale EasyAcademy EXAMS EXAM DESCRIPTION The exam is an oral examination on the theoretical topics covered during lectures. In particular, the student has to provide fluency in the description of the main concept of autonomous agents development. ASSESSMENT METHODS During the oral exam, the teacher asks the student to illustrate some concepts learned in class. For each concept, the student has to present the definition, the conditions of applicability and pros/cons in relation to other approaches. During the examination, the teacher verifies that the concepts have been learned at a level of knowledge that allows the student to apply them in real cases. Exam schedule Data appello Orario Luogo Degree type Note 18/02/2022 09:00 GENOVA Esame su appuntamento 16/09/2022 09:00 GENOVA Esame su appuntamento