Language: Italian
An introduction to the geometry of Riemann surfaces, affine and projective curves, and algebraic varieties, and a short overview of basic ring theory.
The aim of the course is to provide an introduction to the theory of Riemann surfaces from a topological, analytic, geometric and algebraic perspective. One of the highlights of these ideas will be the Riemann-Roch theorem, whose main application shows that any compact Riemann surface is in reality an algebraic projective smooth curve. Moreover, this will lead us straight into the realm of algebraic geometry and our goal is to discuss some of the basic principles of this field with the main focus on the correspondence between the algebra of rings and the geometry of shapes defined by the solutions of polynomial equations. The most important and unifying message of the course is that it is concieved as an ideal meeting ground for topology, analysis, geometry and algebra and is displaying as a consequence the unity of mathematics.
Basic knowledge of topology, complex analysis and commutative algebra are welcome, but not strictly necessary.
In presence or Teams, depending on the pandemic and regulatory situation.
Riemann surfaces including many examples. Holomorphic maps between Riemann surfaces. Multiplicity, degree, Riemann-Hurwitz theorem and the genus of a smooth projective plane curve. Meromorphic functions and divisors on Riemann surfaces. Linear systems and their connection to holomorphic maps to projective spaces. Differential forms and Riemann-Hurwitz theorem for them. Riemann-Roch theorem and its many applications with the main focus on showing that any compact Riemann surface is a smooth projective algebraic curve. Algebraic varieties and their connections to noetherian rings. Zariski topology and the dimension of an algebraic variety. Projective varieties and the associated graded rings. Bézout's theorem and its many consequences on the geometry of curves over the complex numbers and also over the real numbers.
VICTOR LOZOVANU (President)
ARVID PEREGO
MATTEO PENEGINI (President Substitute)
The class will start according to the academic calendar.
BASIC PROJECTIVE ALGEBRAIC GEOMETRY
Oral.
Oral exam consists of a seminar on a subject chosen by the student from a list provided by the professor.
Attendance: advisable, but still essential as for all the course at the university.