CODE  101938 

ACADEMIC YEAR  2022/2023 
CREDITS 

SCIENTIFIC DISCIPLINARY SECTOR  FIS/03 
LANGUAGE  Italian 
TEACHING LOCATION 

SEMESTER  2° Semester 
TEACHING MATERIALS  AULAWEB 
The course deals with the most important computational methods for the study of systems with many degrees of freedom in condensed matter physics. The initial part includes an introduction to molecular dynamics and to the basic principles of the Monte Carlo method. The course then continues with the discussion of methods for the study of the energy landscape, with applications ranging from the physics of nanoparticles, to biological systems and to the computeraided drug design.
The Learning outcomes are:
 learning the concepts of energy landscape and freeenergy landscape
 learning the principles underlying the methods for exploring the energy landscape for complex systems
 learning the concepts of collective variables and freeenergy landscape
 learning the most important methods for exploring the energy landscape
 acquisition of the ability to elaborate and use software for the study of complex systems of interest in condensed matter physics and biophysics
The student is expected to learn the fundamental elements for the characterization of the energy landscape and their role in determining equilibrium properties and transformation kinetics of complex systems.
The student must be able to elaborate software for the simplest computational methods (molecular dynamics in unconstrained systems) and to use already prepared software for the study of more complex methods.
Knowledge of basic statistical mechanics (statistical ensembles, partition function and its connection with free energy)
Knowledge of at least one programming language (c ++, matlab, python ...)
Lectures and computer exrecises
The course is in collaboration with Dr. Giulia Rossi (Università di Genova) and Dr. Walter Rocchia (Italian Institute of Technology, IIT)
The program is divided into the following parts
 Introduction to molecular dynamics (R. Ferrando)
 Energy Landscape (R. Ferrando)
 Structural optimization (R. Ferrando)
 Methods for accelerated exploration of the energy landscape (R. Ferrando)
 Free Energy Landscape and metadynamics (G. Rossi)
 Introduction to computeraided drug design. Computational techniques for estimating chemical bond affinity (W. Rocchia)
Lectures notes and slides
Office hours: By appointment (email: bochicchio@fisica.unige.it).
Office hours: Every day after appointment request.
RICCARDO FERRANDO (President)
DAVIDE BOCHICCHIO (President Substitute)
All class schedules are posted on the EasyAcademy portal.
The exam is oral and consists of the presentation of a short seminar (2025 minutes) on a topic chosen by th estudent, followed by a discussion. Finally, questions are asked about the parts of the course not directly related to the topic chosen for the seminar.
The student is expected to be able to elaborate on the topic chosen for the seminar independently and critically. This is ascertained by evaluating the quality of the oral presentation and of the slides, and by asking relevant questions. The knowledge of the fundamental concepts explained in the course is ascertained with further questions not directly related to the topic of the seminar.