CODE  66453 

ACADEMIC YEAR  2022/2023 
CREDITS 

SCIENTIFIC DISCIPLINARY SECTOR  MAT/03 
TEACHING LOCATION 

SEMESTER  2° Semester 
TEACHING MATERIALS  AULAWEB 
Language: Italian
The course has two main goals. First of all, it offers an introduction to the theory of affine and projective algebraic varieties over an algebraically closed field, with a special focus on the case of plane algebraic curves. By specializing to the field of complex numbers, we then introduce Riemann surfaces (of which nonsingular plane curves represent important examples) and prove some of the fundamental results in this area.
The aim of the course is to provide an introduction to the theory of Riemann surfaces from a topological, analytic, geometric and algebraic perspective. One of the highlights of these ideas will be the RiemannRoch theorem, whose main application shows that any compact Riemann surface is in reality an algebraic projective smooth curve. Moreover, this will lead us straight into the realm of algebraic geometry and our goal is to discuss some of the basic principles of this field with the main focus on the correspondence between the algebra of rings and the geometry of shapes defined by the solutions of polynomial equations. The most important and unifying message of the course is that it is concieved as an ideal meeting ground for topology, analysis, geometry and algebra and is displaying as a consequence the unity of mathematics.
Basic knowledge of topology, complex analysis and commutative algebra are welcome, but not strictly necessary.
In presence or Teams, depending on the pandemic and regulatory situation.
Riemann surfaces including many examples. Holomorphic maps between Riemann surfaces. Multiplicity, degree, RiemannHurwitz theorem and the genus of a smooth projective plane curve. Meromorphic functions and divisors on Riemann surfaces. Linear systems and their connection to holomorphic maps to projective spaces. Differential forms and RiemannHurwitz theorem for them. RiemannRoch theorem and its many applications with the main focus on showing that any compact Riemann surface is a smooth projective algebraic curve. Algebraic varieties and their connections to noetherian rings. Zariski topology and the dimension of an algebraic variety. Projective varieties and the associated graded rings. Bézout's theorem and its many consequences on the geometry of curves over the complex numbers and also over the real numbers.
Office hours: Office hours to be decided with the Professor, by writing to his email address: lozovanu@dima.unige.it
Office hours: Office hours to be decided with the Professor, by writing to her email address: romano@dima.unige.it
VICTOR LOZOVANU (President)
ARVID PEREGO
MATTEO PENEGINI (President Substitute)
The class will start according to the academic calendar.
Oral.
Students with DSA certification ("specific learning disabilities"), disability or other special educational needs are advised to contact the professor at the beginning of the semester to agree on teaching and examination methods that, in compliance with the teaching objectives, take account of individual learning arrangements and provide appropriate compensatory tools.
Oral exam (including seminar chosen by the student among recommended topics) and evaluation of written exercises that will be proposed during the course.
Attendance: advisable, but still essential as for all the course at the university.