CODE | 101798 |
---|---|
ACADEMIC YEAR | 2022/2023 |
CREDITS |
|
SCIENTIFIC DISCIPLINARY SECTOR | INF/01 |
LANGUAGE | English |
TEACHING LOCATION |
|
SEMESTER | 1° Semester |
TEACHING MATERIALS | AULAWEB |
The course introduces data engineering skills that are at the basis of structured data analysis and Business Intelligence. Students will llearn the basics of structured data modeling for analysis, develop an in-depth understanding of data warehouse design and data manipulation and gain practical experience in formulating OLAP (online analytical processing) queries in SQL. Large scale data analysis frameworks will also be introduced. In the practical activities, students will work with large data sets in a data warehouse environment to design and populate a data warehouse, query it and create dashboards, using BI and ETL tools as well as OLAP servers. In the final project, such skills will be applied to build a small, basic data warehouse, populate it with data, and create dashboards and other visualizations to analyze and communicate the data to a broad audience.
Learning the theoretical, methodological, and technological fundamentals of data management and analysis in decision support systems, with a specific reference to data warehousing architectural and design issues, as well as key elements of data integration and governance, data quality and cleaning, ExtractionTransformation-Loading processes, conceptual, logical, and physical design of data warehouses, storage architectures and scalable parallel processing, use of data warehouses for business reporting and online analytical processing.
DESCRIBE the principles for data analysis and large-scale data analysis
UNDERSTAND the differences between data management (OLTP) systems and data analysis (OLAP) systems
UNDERSTAND the differences between design issues and methodologies for databases and for datawarehouses
UNDERSTAND the main issues in data quality, data integration, and data governance
UNDERSTAND the main issues in data warehouse design, with specific reference to conceptual design, ROLAP logical design, view selection, physical design and ETL design
UNDERSTAND the main issues in large scale data analysis
SELECT the most adequate systems and languages for a given analysis context
USE some of the presented systems for data exploration, data reconciliation, data warehouse storage, data reporting and OLAP querying
USE some of the presented systems for construncting a datawarehouse from a given operational dataset and for performing non-trivial analyses on it
SOLVE exercizes related to the design of data warehouses and OLAP queries
Fundamentals of database models, languages, and systems.
Class, project, and outside preparation.
The course will present the main architectural and design issues related to data management and analysis in data support systems (data warehousing), comparing them with traditional transactional systems.
Office hours: Appointment by email or by Microsoft Teams Office: Valle Puggia – 301
Office hours: Appointment by email or by Microsoft Teams Office: Valle Puggia – 327
GIOVANNA GUERRINI (President)
DANIELE TRAVERSARO
BARBARA CATANIA (President Substitute)
All class schedules are posted on the EasyAcademy portal.
Written examination, oral examination (including project discussion).
Details on how to prepare for the examination and the required degree of knowledge for each topic will be provided during the lessons.
During the semester, some assignments (groupwork) as well as a project will be proposed. The project is mandatory.
The written exam consists of a set of questions and exercizes on basic topics of the course; the goal of this test is to verify the understanding of the main issues addressed during the lessons.
The oral exam consists of an in-depth discussion of the solutions developed by the student for the given project, in order to assess whether the student has reached an appropriate level of knowledge. For students that do not successfully complete the assignments the oral exam will also include theoretical questions and / or practices of the course topics.
Date | Time | Location | Type | Notes |
---|---|---|---|---|
09/01/2023 | 09:00 | GENOVA | Scritto | |
10/02/2023 | 09:00 | GENOVA | Scritto | |
12/06/2023 | 09:00 | GENOVA | Scritto | |
18/07/2023 | 09:00 | GENOVA | Scritto | |
13/09/2023 | 09:00 | GENOVA | Scritto |