Salta al contenuto principale della pagina

DIFFERENTIAL EQUATIONS 2

CODE 109053
ACADEMIC YEAR 2022/2023
CREDITS
  • 6 cfu during the 1st year of 9011 MATEMATICA(LM-40) - GENOVA
  • 6 cfu during the 2nd year of 9011 MATEMATICA(LM-40) - GENOVA
  • SCIENTIFIC DISCIPLINARY SECTOR MAT/05
    TEACHING LOCATION
  • GENOVA
  • SEMESTER 2° Semester
    TEACHING MATERIALS AULAWEB

    OVERVIEW

    The course will introduce the students to Sobolev spaces and then we will investigate variational aspects of elliptic differential equations.

     

    AIMS AND CONTENT

    LEARNING OUTCOMES

    The aim of the course is to provide an introduction on Sobolev spaces, and to provide variational interpretation of some partial differential equations, also studying the regularity of the solutions. As an application we will provide simple results of existence of regular solutions.

    AIMS AND LEARNING OUTCOMES

    To give fundamental basis around weakly differentiable functions (AC functions, Sobolev functions and their characterization). To interpret weak solution to PDEs as minima of variational problems and vice-versa through Euler-Lagrange equations; to deduce existence and regularity using this principle. The double objective is to give the students fundamental tools and results in PDEs and general principles of Calculus of Variations.

    Learning outcomes: Comprehension of concept and proofs shown at lecture. To be able to provide proof of results similar to those seen at lectures, to be able to come up with example and counterexamples and to solve exercises related to the course.

    PREREQUISITES

    Analisi matematica 1,  2 e 3, Analisi Funzionale 1. Preferrably also Analisi Funzionale 2 and Equazioni differenziali 1.

     

    TEACHING METHODS

    Lectures at the blackboard

    SYLLABUS/CONTENT

    Space W^{1,p} on the interval and definition of weak derivative; relations with AC functions and density of smooth functions in W^{1,p}. Generalization of W^{1,p} on R^n: equivalent definitions through integration by parts formula and closure of smooth functions, and AC characterization on lines. Localization on an open set and extension operator from an open and regular set. Compact embeddings and Poincaré-Wirtinger inequality.

    Differential equations in weak form and relation to variational principles through Euler-Lagrange equations (mainly elliptic equations). Existence via Hopf-Lax. Caccioppoli estimates and Shauder H^2 regularity: bootstrap. L^p regularity and explicit formulas for Laplace and Poisson equations. Regularity in the case of non-costant coefficients (frezing). Holder regularity à la De Giorgi in the case of L^{\infty} coefficients.

     

    TEACHERS AND EXAM BOARD

    Exam Board

    SIMONE DI MARINO (President)

    FILIPPO DE MARI CASARETO DAL VERME

    MATTEO SANTACESARIA (President Substitute)

    LESSONS

    LESSONS START

    February 2023

    Class schedule

    All class schedules are posted on the EasyAcademy portal.

    EXAMS

    EXAM DESCRIPTION

    Oral and written exam.

    Students with DSA certification ("specific learning disabilities"), disability or other special educational needs are advised to contact the teacher at the beginning of the course to agree on teaching and examination methods that, in compliance with the teaching objectives, take account of individual learning arrangements and provide appropriate compensatory tools.
     

    ASSESSMENT METHODS

    In the exam some aspect on the theory will be considered, as well as some exercises related to the course. This allows to test the knowledge and the grasp of the course by the students, as well as their capacity in applying theoretical results in order to solve exercises.