CODE | 86960 |
---|---|
ACADEMIC YEAR | 2022/2023 |
CREDITS |
|
SCIENTIFIC DISCIPLINARY SECTOR | ING-INF/03 |
LANGUAGE | Italian (English on demand) |
TEACHING LOCATION |
|
SEMESTER | 1° Semester |
TEACHING MATERIALS | AULAWEB |
This course aims at provining to the Master student basic and advanced concepts on the design of methods and techniques for data driven self-awareness in autonomous artificial agents . Signal Processing, Data Fusion and Machine learning under a Bayesian pespective will be the key dimensions on which introduced concepts will be described. Laboratory application and agent design will integrate course theoretical activities
- To introduce theory and techniques for architectural design of context-aware telecommunications systems able to provide informative services according to a cognitive paradigm
- To provide a common framework to identify and to describe methodologies and techniques for perception, representation and analysis of contextual multisensorial physical (radio, video, audio, etc.) and virtual signals (e.g.network-based context data))
- To provide a common framework to identify and to describe methodologies and techniques for integrating multisensorial contextual data by using Data Fusion paradigms and techniques
- To provide a common framework for defining behavioral artificial models for context based, adaptive and personalized decision steps used by cognitive system to address and react with respect to different contextual working situations.
- To show examples and applications of specific techniques within cognitive telecommunication systems by means of description of two main case studies: cognitive radio and multisensor/multimodal cognitive human-machine interfaces in smart spaces.
Knowledge on methods and techniques for acquisition, joint representaion and processing of proprioreceptive and exteroreceptive multisensorial signals in cognitive dynamic agents (e.g. semi autonomous&autonomous vehicles like drones, cars, robots) cognitive radios, etc.)
- Knowledge on methods and techniques for Multisensor Data Fusion: coupled hierarchical processing of multisensorial signals. Machine learning for data driven driven experience based learning of Dynamic Generative Fusion models from sequences of multdimensional sensorial data.
- Knowledge on Machine Learning methods and techniques based on Cognitive Dynamic Systems theory for Situation awareness and Self awareness in artificial cognitive agents
- Knowledge and capabilities on case studies: design of Self Awareness frameowrk for autonomous systems (dataset on cars robots and drones, cognitive radios)
- Knowledge and capabilities to use and apply: multisensorial signal processing tools and algorithms for acquisition, experience driven machine learning techniques for estimation of Generative multisensorial Bayesian hierarchical models. Bayesian Inference on learned Generative Models for dynamic state estimation, prediction and anomaly detection of interaction between agent and its contextual environment situation .
Probability theory, Random Processes, Signal theory
The course is divided in two parts. Lectures in frontal teaching modality presented together with slides will aim at describing the theroretical concepts and the techniques. Such lectires will cover 40 hours and can be recorded and made available on those channels recommended by Univeristy of Genova. The second part is done within a laboratory carried on by an expert of the field and will involve application of programs in Matlab framework that correspond to theories and techniqeus shon at lectures. Students will be required to present a report at the end of each lab experience. 10 Lab experiences are planned and will help students to be prepared to present the final report to be discussed during the exam that will show application and discussion of techniques abnd results over a dataset assigned..
Applying knowledge and understanding in lab
Making Judgements:
Learning and communications skills:
Conference style oral slide presentation
Basic: Class notes written by the lecturer and made available through Internet
- A. R. Damasio, Looking for Spinoza: Joy, Sorrow, and the Feeling Brain, 1st ed. Orlando: Harcourt, 2003. [Online]. Available:http://lccn.loc.gov/2002011347
- S. Haykin, Cognitive Dynamic Systems: Perception-action Cycle, Radar and Radio, ser. Cognitive Dynamic Systems: Perception–action Cycle, Radar, and Radio. Cambridge University Press, 2012.
- P. R. Lewis, M. Platzner, B. Rinner, J. Torresen, and X. Yao, Eds., Selfaware Computing Systems: An Engineering Approach. Springer, 2016.
- K. J. Friston, B. Sengupta, and G. Auletta, “Cognitive dynamics: From attractors to active inference,” Proceedings of the IEEE, vol. 102, no. 4, pp. 427–445, 2014. [Online]. Available:
https://doi.org/10.1109/JPROC.2014.2306251
- S. Haykin and J. M. Fuster, “On cognitive dynamic systems: Cognitive neuroscience and engineering learning from each other,” Proceedings of the IEEE, vol. 102, no. 3, pp. 608–628, 2014.
Office hours: Students can ask appointments for clarifications, explanations on course subjects by sending e-mail at Carlo.Regazzoni@unige.it
CARLO REGAZZONI (President)
SILVANA DELLEPIANE
LUCIO MARCENARO
Exam is structured in a written plus an oral part
The written part consists of presentation of either a report or a poster describing a set of activities and results done by the student aiming at demonstrating nowledge and capabilities he acquired along lecures and lab attendance. In case the student selects to process assigned dataset of the same type to the ones analyzed along lab experiences a report has to be presented. Otherwise the student can select and propose autonomously a case of study of interest agreed with the professor. The case of study should be oriented to the design of an integrated processing system base on course techniques capable to analyze a generic dataset whose specifics come for the choice of the case of study itself. A poster or a report can be presented in this case as written exams.
The dataset or case of study have to be assigned/agreed at least three weeks before oral exam date on the basisof student request. In both cases the written text proposed by the student will have to show that student has acquired knowledge and capabilities presented in the course. The written exam will have to be delivered at indicated online repository at least 4 days before oral exam. The outcome of the evaluation of the written exam will be communicated the day before the oral exam.
Oral exam will consist of discussion of the written exam, The student will have to prepare max 20 slides to describe results and approaches presented in the written text. Oral discussion will be oriented to demonstrate knowledge and capabilities to describe choices performed when developing report or poster, as well as to comment results and performances obtained/expected for the chosen problem.
The oral exam will be passed in case the student will be admitted to the oral with at least 12 over 20 AND if the outcome of the oral will be at least 6 over 10. Laude can be assigned during the oral part.
Students with learning disorders ("disturbi specifici di apprendimento", DSA) will be allowed to use specific modalities and supports that will be determined on a case-by-case basis in agreement with the delegate of the Engineering courses in the Committee for the Inclusion of Students with Disabilities
Exam aims at assessing the following aspects about acquired student's knowldge and capabilities:
Level of Knowledge acquired with respect to theories and methods presented in course lectures
Level of practical and integration capabilities with respect to either the assigned data analytics problem (in case of dataset processing choice) o the design and the specifications of the data analysis system (in case of case of study choice) chosen for the written part of the exam.
Level of Capability and knowledge when motivating performed choices and obtained results during the oral discussion
Date | Time | Location | Type | Notes |
---|---|---|---|---|
12/01/2023 | 10:15 | GENOVA | Orale | |
26/01/2023 | 10:15 | GENOVA | Orale | |
09/02/2023 | 10:15 | GENOVA | Orale | |
08/06/2023 | 10:15 | GENOVA | Orale | |
22/06/2023 | 10:15 | GENOVA | Orale | |
13/07/2023 | 10:15 | GENOVA | Orale | |
27/07/2023 | 10:15 | GENOVA | Orale | |
31/08/2023 | 10:15 | GENOVA | Orale | |
14/09/2023 | 10:15 | GENOVA | Orale |
Dataset will be assigned at least two weeks before exam and report will have to be presented on Monday before exam date (usually on Thursday) Oral admission will be communicated a day before oral exam.