CODE 101804 ACADEMIC YEAR 2023/2024 CREDITS 5 cfu anno 2 INGEGNERIA ELETTRONICA 8732 (LM-29) - GENOVA 6 cfu anno 2 MATEMATICA 9011 (LM-40) - GENOVA 9 cfu anno 1 COMPUTER SCIENCE 10852 (LM-18) - GENOVA 6 cfu anno 1 MATEMATICA 9011 (LM-40) - GENOVA SCIENTIFIC DISCIPLINARY SECTOR INF/01 LANGUAGE English TEACHING LOCATION GENOVA SEMESTER 2° Semester TEACHING MATERIALS AULAWEB OVERVIEW The course will provide an overview of principles behind neural networks and deep architectures, providing an overview of classical and recent approaches AIMS AND CONTENT LEARNING OUTCOMES Learning how to use advanced machine learning algorithms, including learning data representation (dictionaries and metric), deep learning, and learning in dynamic environment (online, active and reinforcement learning), by grasping the underlying computational and modeling issues. AIMS AND LEARNING OUTCOMES Students will be provided with an overview of neural networks and deep architectures, starting from basic principles to more advanced concepts. An overview of the different types of architecture will be presented. Also, recent methodologies will be introduced to discuss practical problems related for instance to computational aspects, data requirements, and generalization abilities. Hands-on activities, in which students will practice the use of neural networks, will always complement the theoretical classes. The students will deepen their capability of critically analysing the results. PREREQUISITES Basic of Machine Learning, programming (preferrable in Python) TEACHING METHODS Theoretical classes will be coupled with practical lab sessions Students will be asked to work in groups during such lab sessions. SYLLABUS/CONTENT The course will cover the following topics: Neural Networks Convolutional Neural Networks Recurrent Neural Networks LSTMs Transformers Graph Neural Networks Autoencoders and GANs Deep clustering Representation Learning strategies Transfer Learning and domain adaptation RECOMMENDED READING/BIBLIOGRAPHY The material will provided by the instructors, see the course Aulaweb page for additional references. TEACHERS AND EXAM BOARD NICOLETTA NOCETI Ricevimento: Appointment by email (nicoletta.noceti@unige.it) VITTORIO MURINO VITO PAOLO PASTORE Exam Board NICOLETTA NOCETI (President) VITO PAOLO PASTORE VITTORIO MURINO (President Substitute) LESSONS LESSONS START In agreement with the academic calendar approved by the Committee of the Study Courses in Informatics and Computer Science Class schedule The timetable for this course is available here: Portale EasyAcademy EXAMS EXAM DESCRIPTION The exam will consist in two main parts: a project (in Python) that will be presented in a short seminar (no project if number of credits < 9) an oral exam ASSESSMENT METHODS The exam will evaluate the overall understanding of the topics of the course, the capability to generalize the concepts to unseen problems and analyse the obtained results. Clarity of exposition, completeness of the concepts, quality of the proposed solutions and critical thinking will be taken into account. Exam schedule Data appello Orario Luogo Degree type Note 11/06/2024 09:00 GENOVA Orale 02/07/2024 09:00 GENOVA Orale 18/07/2024 09:00 GENOVA Orale 12/09/2024 09:00 GENOVA Orale