Skip to main content
CODE 90146
ACADEMIC YEAR 2023/2024
CREDITS
SCIENTIFIC DISCIPLINARY SECTOR ING-INF/03
LANGUAGE English
TEACHING LOCATION
  • GENOVA
SEMESTER 2° Semester
MODULES Questo insegnamento è un modulo di:
TEACHING MATERIALS AULAWEB

OVERVIEW

The class aims at the introduction of the basic elements for understanding and applying the mathematical instruments commonly utilized for performance analysis of telecommunication networks and for teletraffic engineering.

AIMS AND CONTENT

LEARNING OUTCOMES

• Methods of network performance evaluation: analytical models, simulation, experimental measurements • Packet-level and flow-level models • Elementary queueing theory: elements of a queue, statistics of input and service, general results on infinite- and finite-buffer queues, Little’s Theorem, Kendall’s notation • Markovian queues: Poisson arrivals, exponential distribution, stationary distribution of general birth-death systems; M/M/1, M/M/1/K, M/M/m/m, M/M/m • Discrete- and continuous-time Markov Chains • M/G/1 and Pollaczek-Kinchin formula; Pareto distribution; M/G/1 with vacations; priority queueing • Networks of queues: Jackson networks, independence hypothesis, Kleinrock’s delay formula

AIMS AND LEARNING OUTCOMES

The main goal of the class is to provide the elements for understanding and applying queueing models for the representation, performance analysis and control of telecommunication networks. At the end of the class the student should be able to to use dynamic models based on Markov chains and Markovian queueing models in equilibrium, as well as to represent and evaluate various performance indexes of telecommunication networks (throughput, delay, loss probability).

PREREQUISITES

To understand the topics covered, some knowledge is required of basic Mathematical Analysis, Probability Theory and Random Variables (discrete and continuous).

TEACHING METHODS

The class is taught basically with face-to-face lectures. Numerous exercizes will be solved, relating to the application of the methodology to the derivation of performance indexes of networks and network elements. The exam consists of a written problem solution, along with the oral discussion of it. The written part can be substituted by the positive completion of the periodic tests that might be proposed during the class. Working students and students with a certification of Specific Learning Disturbances (DSA), disabilty or other special educational needs are advised to contact the lecturer at the beginning of the class to agree upon teaching and verification modalities that, respecting anyway the course objectives, may be tailored to the individual learning capabilities.

SYLLABUS/CONTENT

Methods of network performance evaluation: analytical models, simulation, experimental measurements. Packet-level and flow-level models. Elementary queueing theory: elements of a queue, statistics of input and service, general results on infinite- and finite-buffer queues, Little’s Theorem, Kendall’s notation. Markovian queues in equilibrium: properties of the exponential distribution, Poisson process, stationary distribution of general birth-death systems, M/M/1, M/M/1/K, M/M/infinity, M/M/m/m, M/M/m, M/M/m/m/N. Discrete- and continuous-time Markov Chains. M/G/1 queue. Pollaczek-Kinchin formula. Pareto distribution and M/Pareto/1. Server vacation. M/G/1 with pre-emptive priority. Networks of queues. Jackson networks, Product Form Solution, independence hypothesis, Kleinrock’s delay formula and applications.

RECOMMENDED READING/BIBLIOGRAPHY

The class is based on the first part of the lecture notes on Aulaweb:

- F. Davoli, "Lecture Notes for the Courses of Telecommunication Networks: Queueing Theory and Teletraffic", 2nd ed., July 2021.

Other useful material can be found on:

- L. Kleinrock, Queueing Systems, Vol. I, Wiley, New York, 1975.

- M. Zukerman, Introduction to Queueing Theory and Stochastic Teletraffic Models, 2017; online: https://arxiv.org/pdf/1307.2968.pdf.

- J. Virtamo, Queueing Theory, Lecture Notes, 2005; online: http://www.netlab.tkk.fi/opetus/s383143/kalvot/english.shtml.

TEACHERS AND EXAM BOARD

Exam Board

MARIO MARCHESE (President)

ALDO GRATTAROLA

FABIO PATRONE

SANDRO ZAPPATORE

FRANCO RINO DAVOLI (President Substitute)

LESSONS

Class schedule

L'orario di tutti gli insegnamenti è consultabile all'indirizzo EasyAcademy.

EXAMS

EXAM DESCRIPTION

The exam is written and usually consists of two problems on the topics of the class. The student who wants to improve the mark of the written test can do an oral that consists of a discussion of some of the topics relating to the written problems. Obviously, depending on the outcome, the mark obtained in the written part may also decrease.

ASSESSMENT METHODS

Written examination.

Exam schedule

Data Ora Luogo Degree type Note
09/01/2024 08:00 GENOVA Scritto + Orale Exam methods and actual exam dates may be subject to changes depending on the covid emergency and will be communicated to students by e-mail. Real registration for the exam must also be done by sending an email to the lecturer.
18/01/2024 09:00 GENOVA Orale
13/02/2024 08:00 GENOVA Scritto + Orale Exam methods and actual exam dates may be subject to changes depending on the covid emergency and will be communicated to students by e-mail. Real registration for the exam must also be done by sending an email to the lecturer.
29/05/2024 15:30 GENOVA Scritto + Orale The methods of examination and the actual dates of the examination may undergo changes depending on the covid emergency and will be communicated to students by e-mail. Real registration for the exam must also be done by sending an email to the lecturer.
17/06/2024 09:00 GENOVA Orale
01/07/2024 09:00 GENOVA Orale
13/09/2024 08:00 GENOVA Scritto + Orale The methods of examination and the actual dates of the examination may undergo changes depending on the covid emergency and will be communicated to students by e-mail. Real registration for the exam must also be done by sending an email to the lecturer.

Agenda 2030 - Sustainable Development Goals

Agenda 2030 - Sustainable Development Goals
Responbile consumption and production
Responbile consumption and production