Salta al contenuto principale
CODICE 90498
ANNO ACCADEMICO 2022/2023
CFU
SETTORE SCIENTIFICO DISCIPLINARE INF/01
LINGUA Inglese
SEDE
  • GENOVA
PERIODO 1° Semestre
MATERIALE DIDATTICO AULAWEB

OBIETTIVI E CONTENUTI

OBIETTIVI FORMATIVI

Learning how to use classical supervised and unsupervised machine learning algorithms by grasping the underlying computational and modeling issues.

PREREQUISITI

Basic probability, calculus, algorithms.

PROGRAMMA/CONTENUTO

The Course covers the basic ideas behind statistical learning and a number of prototypical supervised approaches, including, local methods, regularization networks, linear and non linear models. The Course also cover basic unsupervised problems such as clustering and dimensionality reduction. Special effort is devoted to discussing how to set up a repliable machine learning pipelines.

DOCENTI E COMMISSIONI

Commissione d'esame

NICOLETTA NOCETI (Presidente)

ELENA NICORA

LORENZO ROSASCO (Presidente Supplente)

ALESSANDRO VERRI (Supplente)

ESAMI

Calendario appelli

Data appello Orario Luogo Tipologia Note
19/01/2023 09:30 GENOVA Scritto
19/01/2023 09:30 GENOVA Orale
02/02/2023 09:30 GENOVA Orale
02/02/2023 09:30 GENOVA Scritto
15/06/2023 09:30 GENOVA Scritto
15/06/2023 09:30 GENOVA Orale
06/07/2023 09:30 GENOVA Scritto
06/07/2023 09:30 GENOVA Orale
11/09/2023 09:30 GENOVA Scritto