Skip to main content
CODE 61804
ACADEMIC YEAR 2016/2017
CREDITS
SCIENTIFIC DISCIPLINARY SECTOR MAT/08
LANGUAGE Italiano
TEACHING LOCATION
SEMESTER 1° Semester
TEACHING MATERIALS AULAWEB

AIMS AND CONTENT

LEARNING OUTCOMES

The course aims to introduce fundamental concepts of numerical analysis (complexity, errors);  we present the main computational methods for solving the most relevant problems of numerical linear algebra and some interpolation and minimization problems.

SYLLABUS/CONTENT

  • Error analysis 
    • Floating-point numbers and machine precision.
    • Inerent error. Estimate for rational functions.
    • Algorithmic error.
    • Total error.
  • Solution of nonsingular linear systems 
    • Numerical solution of linear systems (direct method of Gaussian elimination).
    • Conditioning of matrices.
    • Complexity and algorithmic error for the solution of linear systems.
  • Other topics in linear algebra: geometric interpretation of vectors and matrices
    • Scalar product and orthonormal bases.
    • Matrices as geometric linear transformations.
    • Null space, range and rank.
    • Orthogonal matrices: rotations, reflections, QR factorization.
  • Approximated solution of linear systems in the least-squares sense
    • Geometric formulation of the problem.
    • Normal equations.
    • Solution through orthogonalization.
  • Interpolation by spline functions 
    • Definition of interpolating spline.
    • Computational procedure.
    • Survey of mathematical and numerical properties.
  • Other topics in linear algebra: eigenvalues
    • Eigenvalues, eigenvectors, eigenspaces.
    • Characteristic polynomial.
    • Similarity relations e diagonalization.
    • Applications.
  • SVD and applications to least-squares
    • Singular values decomposition (SVD) and relations with eigenvalues.
    • Geometric properties of SVD and numerical rank.
    • Generalized inverse and conditioning.
    • Solution of the least-squares problem via SVD.
    • Application to discrete data approximation (smoothing).
  • Numerical treatment of eigenvalues
    • Numerical properties: conditioning and localization.
    • Iterative power method and variants.
    • Other numerical methods: similarity reduction to a simplified form, QR method.

Computer experiences in C and Matlab languages are planned.

TEACHERS AND EXAM BOARD

Exam Board

FABIO DI BENEDETTO (President)

FEDERICO BENVENUTO

CLAUDIO ESTATICO

CLAUDIA FASSINO

EXAMS

Exam schedule

Data appello Orario Luogo Degree type Note
06/06/2017 14:00 GENOVA Scritto
05/07/2017 14:00 GENOVA Scritto
12/09/2017 14:00 GENOVA Scritto