CODE 66283 ACADEMIC YEAR 2020/2021 CREDITS 6 cfu anno 2 INGEGNERIA ELETTRICA 8716 (L-9) - GENOVA 6 cfu anno 2 INGEGNERIA NAVALE 8722 (L-9) - GENOVA SCIENTIFIC DISCIPLINARY SECTOR ICAR/08 LANGUAGE Italian TEACHING LOCATION GENOVA SEMESTER 1° Semester PREREQUISITES Propedeuticità in ingresso Per sostenere l'esame di questo insegnamento è necessario aver sostenuto i seguenti esami: Chemical Engineering 8714 (coorte 2019/2020) FUNDAMENTAL OF PHYSICS 72360 2019 Electrical Engineering 8716 (coorte 2019/2020) MATHEMATICAL ANALYSIS I 56594 2019 GEOMETRY 56716 2019 FUNDAMENTAL OF PHYSICS 72360 2019 Naval Architecture and Marine Engineering 8722 (coorte 2019/2020) MATHEMATICAL ANALYSIS I 56590 2019 GEOMETRY 56721 2019 MODULES Questo insegnamento è un modulo di: STRUCTURAL MECHANICS AND HYDRODYNAMICS TEACHING MATERIALS AULAWEB OVERVIEW The course introduces the basic principles and methodological aspects of theoretical and applied mechanics, by adopting the tools of mathematical physics. The linear models for the static, kinematic and elastic behaviour of solids and structures are introduced to establish the fundamentals of the structural design. The student develops the engineering confidence and the operational skills to deal with elastic problems of increasing difficulty. AIMS AND CONTENT LEARNING OUTCOMES The course provides the fundamental knowledge of Solid Mechanics and Structural Mechanics: Statics and kinematics of rigid bodies, Linear elastic problem for deformable one-dimensional beams, Linear elastic problem for deformable three-dimensional solids, De Saint Venant problem, Stability of the static equilibrium. AIMS AND LEARNING OUTCOMES OBJECTIVES. Understanding of the theoretical foundations of mechanics (kinematic compatibility, quasi‐static force equilibrium, laws of virtual works and energy conservation). Acquisition of the mathematical tools employed in the formulation of the physical models describing the mechanical behaviour of structural elements and complex structures (discrete models of rigid bodies, continuous models of mono‐ and tri‐ dimensional deformable beams, continuous and discrete models of planar frames). Development of the engineering awareness required for the formulation of structural analysis problems of increasing complexity, and attainment of sufficient proficiency in the practical application of the related solution techniques, focused on the structural design in the elastic field through the allowable stress method. ABILITIES. Upon successful completion of the course, the student will have gained the engineering awareness and operational skills for (a) the formulation and solution of elastic problems for planar frames of deformable beams in the presence of external forces, ground displacements and thermal effects, with focus on the kinematic (generalized displacement and deformation variables) and static unknowns (generalized stress variables); (b) the formulation and solution of the elastic problem for three dimensional deformable prismatic solids, with focus on the kinematic (strain tensor) and static unknowns (stress tensor); (c) the structural design through the allowable stress method. TEACHING METHODS The teaching activities are carried out in the form of theoretical lessons, accompanied by illustration of application examples and, on specific request of the students, by guided exercises to the solution of typical problems and case-studies. Classes could be held online, on the Teams platform, if necessary for emergency reasons. SYLLABUS/CONTENT PART I (10 hours): physical mathematical models of rigid bodies, quasi‐static forces, bilateral holonomic time‐independent constraints, static problem and kinematic problem for rigid bodies. PART II (20 hours): one‐dimensional continuum model of deformable beams (Euler‐Bernoulli and Timoshenko models); static problem, kinematic problem and linear elastic constitutive law for deformable beams; elastic problem and law of virtual works for deformable beams; force method and displacement method for the solution of planar frames of deformable beams. PART III (10 hours): three‐dimensional continuum model of deformable solids (Cauchy model); static problem, kinematic problem and linear elastic constitutive law for the deformable solids; elastic problem for deformable solids. PART IV (20 hours): three‐dimensional continuum model of deformable prismatic solids (De Saint Venant model); elastic problem for the deformable prismatic solids and semi‐inverse method of solution; elementary problems of uniform extension, uniform and non‐uniform flexion, torsion. COMPLEMENTARY: structural design according to the method of allowable stresses; stability of equilibrium. RECOMMENDED READING/BIBLIOGRAPHY Casini, Vasta - Scienza delle Costruzioni (4a Ed.) - Città Studi Edizioni (2019) Luongo, Paolone - Meccanica delle strutture (sistemi rigidi ad elasticità concentrata) - CEA (1997) Luongo, Paolone - Scienza delle costruzioni (Volume 1: Il continuo di Cauchy) - CEA (2004) Luongo, Paolone - Scienza delle Costruzioni (Volume 2: Il problema di De Saint Venant) - CEA (2005) Gambarotta, Nunziante, Tralli - Scienza delle Costruzioni (3a Ed.) - McGraw Hill (2011) Viola - Esercitazioni di Scienza delle Costruzioni (Volume 1: Strutture isostatiche e geometria delle masse) - Pitagora Editrice (1993) Viola - Esercitazioni di Scienza delle Costruzioni (Volume 2: Strutture iperstatiche e verifiche di resistenza) - Pitagora Editrice (1993) TEACHERS AND EXAM BOARD MARCO LEPIDI Ricevimento: Tuesday, 5 pm at the teacher's office in Villa Cambiaso. Students could ask questions online, on the Teams platform, if necessary for emergency reasons. Exam Board GIOVANNA VITTORI (President) ANDREA BACIGALUPO PAOLO BLONDEAUX LUIGI GAMBAROTTA MARCO MAZZUOLI GIUSEPPE PICCARDO RODOLFO REPETTO NICOLETTA TAMBRONI FEDERICA TUBINO MARCO LEPIDI (President Substitute) LESSONS LESSONS START According to the timetable of the Polytechnic School. Class schedule STRUCTURAL MECHANICS EXAMS EXAM DESCRIPTION The final exam involves the sequential execution of (A) a WRITTEN TEST, possibly replaceable by two partial written tests and (B) an ORAL TEST, which can be accessed only after passing the written test. Exams could be held online, on the Teams platform, if necessary for emergency reasons. ASSESSMENT METHODS The final exam involves the sequential execution of (A) a WRITTEN TEST, possibly replaceable by two partial written tests, aimed at ascertaining the application skills acquired by the student in solving exercises related to (i) Elastic problem in determined systems of beams, (ii) Elastic problem in indetermined systems of beams, (iii) Tension fields in the De Saint Venant solid and allowable stress design; (B) an ORAL TEST, which can be accessed only after passing the written test, aimed at ascertaining the theoretical and methodological knowledge acquired by the student, by answering some questions on all the topics of the course program. Registered students can find more information by consulting the "Guide to the Exam" or the "Instructions for the online exams" for the current year, downloadable from the Aulaweb page of the course. Exam schedule Data appello Orario Luogo Degree type Note 11/01/2021 14:00 GENOVA Scritto 15/01/2021 08:30 GENOVA Orale 25/01/2021 14:00 GENOVA Scritto 29/01/2021 08:30 GENOVA Orale 08/02/2021 14:00 GENOVA Scritto 10/02/2021 08:30 GENOVA Orale 14/06/2021 14:00 GENOVA Scritto 18/06/2021 08:30 GENOVA Orale 05/07/2021 14:00 GENOVA Scritto 07/07/2021 08:30 GENOVA Orale 07/09/2021 14:00 GENOVA Scritto 10/09/2021 08:30 GENOVA Orale 13/09/2021 14:00 GENOVA Scritto 15/09/2021 08:30 GENOVA Orale