Skip to main content
CODE 60083
ACADEMIC YEAR 2020/2021
CREDITS
SCIENTIFIC DISCIPLINARY SECTOR SECS-S/01
LANGUAGE Italian
TEACHING LOCATION
  • GENOVA
SEMESTER 2° Semester
SECTIONING Questo insegnamento è diviso nelle seguenti frazioni:
  • A
  • B
  • C
  • PREREQUISITES
    Propedeuticità in ingresso
    Per sostenere l'esame di questo insegnamento è necessario aver sostenuto i seguenti esami:
    • Business Administration 8697 (coorte 2019/2020)
    • CALCULUS FOR UNDERGRADUATED STUDENTS. 41138 2019
    • Maritime, Logistics and Transport Economics and Business 8698 (coorte 2019/2020)
    • CALCULUS FOR UNDERGRADUATED STUDENTS. 41138 2019
    • Economics 8699 (coorte 2019/2020)
    • CALCULUS FOR UNDERGRADUATED STUDENTS. 41138 2019
    Propedeuticità in uscita
    Questo insegnamento è propedeutico per gli insegnamenti:
    • Economics 8699 (coorte 2019/2020)
    • ECONOMETRICS 24615
    TEACHING MATERIALS AULAWEB

    OVERVIEW

    The course “Statistics 1” aims to provide students with the main tools for the quantitative analysis of economic and social phenomena, and to supply the basic statistical knowledged needed to face the other quantitative courses of the Degree Programme.

    AIMS AND CONTENT

    LEARNING OUTCOMES

    Introductory Statistics. In the course the main topics of descriptive statistics, probability and inferential statistics are discussed.

    AIMS AND LEARNING OUTCOMES

    Conoscenza e comprensione: Gli studenti conosceranno i principali strumenti per la sintesi dell’informazione e per la generalizzazione di quanto osservato mediante indagini campionarie.

    Capacità di applicare conoscenza e comprensione: Gli studenti saranno in grado di riorganizzare i dati in tabelle di frequenza univariate e bivariate fornendone adeguata rappresentazione grafica, effettuare analisi descrittive di base per fenomeni unidimensionali, analizzare le relazioni tra due o più fenomeni con particolare riferimento all’analisi di dipendenza e di regressione lineare. Saranno inoltre in grado di applicare alcuni strumenti di inferenza statistica per risolvere semplici problemi.

    Autonomia di giudizio: Gli studenti devono saper utilizzare sia sul piano concettuale che su quello operativo le conoscenze acquisite con autonoma capacità di valutazione e con abilità nei diversi contesti applicativi.

    Abilità comunicative: Gli studenti acquisiranno il linguaggio tecnico tipico della disciplina per comunicare in modo chiaro e senza ambiguità con interlocutori specialisti e non specialisti.

    Capacità di apprendimento: Gli studenti svilupperanno adeguate capacità di apprendimento che consentano loro di continuare ad approfondire in modo autonomo la materia.

     

     

    Knowledge and understanding: Students will know the main tools used to summarize the information and for the generalization of the information observed through sample surveys.

    Ability to apply knowledge and understanding: Students will be able to reorganize data in univariate and bivariate frequency tables providing adequate graphical representation; carry out basic descriptive analyses for one-dimensional phenomena; analyze the relationships between two or more phenomena with particular emphasis on dependence and linear regression analysis. They will also be able to apply some statistical inference tools to solve simple problems.

    Making judgements: Students must be able to use the acquired knowledge both on a theoretical and operational level with autonomous assessment skills, in various applicative contexts.

    Communication skills: Students will acquire the technical language typical of the discipline to communicate clearly and without ambiguity with both statisticians and non-statisticians.

    Learning skills: Students will develop adequate learning skills that allow them to continue to study the subject independently.

     

    PREREQUISITES

    The course requires knowledge of the basic contents of a course of General Mathematics for Business and Economics.

    TEACHING METHODS

    Traditional lessons and exercises and through AulaWeb. Since the training objectives concern both theoretical and applicative skills, there will be both lessons focused on the methodological aspects of statistics and lessons based on exercises in which numerical problems are faced and examples of simple analyzes on real data are discussed.

    Due to the Covid19 pandemic, students will be informed via email and AulaWeb messages on the actual method of the lessons (in person or remotely).

    SYLLABUS/CONTENT

    Part I: Elements of descriptive statistics

    1. Introduction to data collection
    2. Distribution of a variable and its representation: Frequency distributions and diagrams
    3. Location indices: means, median, mode, percentiles
    4. Scale indices
    5. Measures of  concentration
    6. Index numbers
    7. Association measures for two variables
    8. Statistical independence
    9. Association between qualitative variables.
    10. Correlation between quantitative variables
    11. Simple linear regression

    Part II: Probability

    1. Events and events sigma-field
    2. Kolmogorov axioms
    3. Conditional probability and independence
    4. Bayes theorem
    5. Discrete and continuous random variables:
      1. Bernoulli and Binomial r.v.
      2. Poisson r.v.
      3. Normal r.v.
    6. The Central Limit Theorem

    Part III: Introduction to statistical inference

    1. Sampling and sampling distributions
    2. Point estimation
    3. Estimators and their properties
    4. Interval estimation
    5. Confidence interval for a mean (variance unknown)
    6. Confidence interval for a proportion
    7. Theory of statistical
    8. Test for a mean, test for a proportion.
    9. Comparison of two means.

     

    RECOMMENDED READING/BIBLIOGRAPHY

    Foreign students are asked to contact the teachers to agree on the text book in English language.

    TEACHERS AND EXAM BOARD

    Exam Board

    FABIO RAPALLO (President)

    CORRADO LAGAZIO

    LUCA PERSICO

    LESSONS

    LESSONS START

    The course starts on 15 February 2021

    Class schedule

    STATISTICS 1 A

    EXAMS

    EXAM DESCRIPTION

    The final exam is an oral exam. The complete exam rules are published on the course page on Aulaweb. 

     

    ASSESSMENT METHODS

    The oral exam consists of: 

    1) questions on theory  

    2) questions based on the exercises 

    The questions and exercises are chosen in such a way to cover, as far as possible, all the topics of the exam program. Theoretical questions are used to assess the student's degree of understanding, while the questions based on the exercises are used to measure the ability to apply the acquired knowledge. 

    Exam schedule

    Data appello Orario Luogo Degree type Note
    22/01/2021 09:30 GENOVA Scritto
    12/02/2021 09:30 GENOVA Scritto
    05/05/2021 11:30 GENOVA Scritto
    08/06/2021 09:30 GENOVA Orale
    22/06/2021 09:30 GENOVA Orale
    20/07/2021 09:30 GENOVA Orale
    10/09/2021 09:30 GENOVA Orale

    FURTHER INFORMATION

    Additional information for non-attending students

    For non-attending students, no program changes or assessment procedures are applied. Non-attending students are however invited to contact the teacher.