Salta al contenuto principale della pagina


CODE 101883
  • 4 cfu during the 1st year of 9020 CHIMICA INDUSTRIALE (LM-71) - GENOVA
  • 4 cfu during the 2nd year of 9020 CHIMICA INDUSTRIALE (LM-71) - GENOVA
  • 4 cfu during the 1st year of 9017 SCIENZA E INGEGNERIA DEI MATERIALI (LM-53) - GENOVA
  • 4 cfu during the 2nd year of 9017 SCIENZA E INGEGNERIA DEI MATERIALI (LM-53) - GENOVA
  • SEMESTER 2° Semester


    Additive manufacturing is deeply changing several traditional industrial activities, as well as is providing novel opportunities for industrial and technological development. Within this  framework, the practical-theoretical teaching “Polymer Additive Manufacturing” provides the basis to a scientific approach to 3D printing . The physico-chemical concepts behind the  different additive manufacturing processes are described, and the students will use 3D printing softwares and FDM and SLA printers. 



    The teaching provides the basics for a scientific approach to 3D printing. The students will study the chemical-physical processes involved in the additive manufacturing technologies, the use of software and FDM and DLP 3D printers.


    Aim of the teaching Polymer Additive Manufacturing is to provide basic theorical and practical knowledge on 3D printing of polymer materials (in particular with FDM and SLA technologies). At the end of the teaching, the student will be able to manage the working principles and main applications of the 3d printing technologies (FDM, SLA, SLS) and will have some background on software used in additive manufacturing. In particular, students will be familiar with materials used in polymer 3D printing for FDM (thermoplastic materials and their properties), SLA (radical photopolymerization and related issues) as well as SLS, i.e. selective laser sintering. Student will understand the differences of the various technologies highlighting pros/cons and application fields of the different printing techniques. Finally, students will be able to correlate material features and printing conditions to the final properties of printed objects.


    In order to successful achieve the teaching goals, a basic knowledge of polymer properties is requested. To this end, we require the propedeucity (having passed the exam) of the teaching “Science and Technology of Polymer Materials” (for students from UNIGE) or equivalent teaching for students from other universities.


    The teaching is organized in a series of lectures in the classroom, for a total of 24 hours. In such lessons, the basic concepts of physical properties and processability of thermoplastic and thermosets polymer material will be recalled, and the working details of the main polymer additive manufacturing techniques will be introduced (FDM, SLA and SLS 3D printing). After the theoretical lectures, four laboratory practical lessons will follow, for a total of about 13 hours. The students will be divided in small groups, and will put into practice the theoretical knowledge gained in the first part of the teaching. They will use directly different desktop 3D printers (FDM, SLA), familiarizing with the required softwares and exploring the effect of printing parameters on the final quality and properties of the printed objects.


    Front lessons topics will be:

    1. Additive manufacturing – the 4th industrial revolution

    2. Principles of 3D printing: from 3D design to layer printing.

    3. Polymers for additive manufacturing. Main properties of thermoplastics and thermosetting polymers relevant to the printing processes.

    4. Fused deposition modeling: physical and chemical principles, materials and applications.

    5. Stereolithography (photopolymerization) printing: physical and chemical principles, resins, and applications.

    6. Selective laser sintering: physical and chemical principles, material, fundamental characteristics and applications.

    7. Comparison between techniques: correlations between the process parameters and property of printed objects. 8. Future trends in the field.


    1. 3D printing software:

    1.1 Freeware CAD design

    1.2 Slicing

    2. Printing objects by FDM:

    2.1 role of operational parameters to quality

    2.2 printing amorphous and semicrystalline thermoplastic polymers

    3. printing objects by SLA:

    3.1 UV-Vis spectroscopy of the resin/photoinitiator, spectroscopy after printing.

    3.2 role of operating parameters on the quality of the object

    4. Printing with SLS:

    4.1 sintering polymer powders: simulating the printing process



     Stampa 3D – Tutto quello che c’è da sapere sull’unica rivoluzione possibile, D. Sher, D. Marinoni, Hoepli Lavis (TN) 2019.

    • Stampa 3D – Guida completa, A. Maietta,LSWRLavis (TN) 2014

    • Stampa 3D – il manuale pe rhobbisti e maker, P. Calderan, ApogeoTrebaseleghe (PD) 2015

    • The 3D printing handbook, B. Redwood, F. Schöffer, B. Garret (3D fans)

    • 3D printing for dummies, R. Horne, K.K. Hausman (Wiley)

    • Polymer Chemistry, S. Koltenburg, M. Maskas, O. Nuyken (Springer)

    • Polymers: Chemistry and Physics of Modern Material, I.M.G. Cowie

    • Principles of Polymer Chemistry, P. Flory

    • AAVV Fondamenti di Scienza dei Polimeri (AIM)

    • Polymer Physics, U.W. Gedde • Introduction to Polymer Physics, L.H. Sperling


    Exam Board

    DARIO CAVALLO (President)



    PAOLA LOVA (President Substitute)



    Second semester: tentatively, last week of February/first week of March. For further details/updates, please check

    Class schedule

    All class schedules are posted on the EasyAcademy portal.



    The student will be asked to describe the theoretical aspects of at least one 3D printing technique (up to 20 points). Moreover, He will be asked to discuss the results obtained in laboratory, the properties of the manufactured products and the properties of the materials used (up to 10 points). For each exercise, the student must bring to the examination all the laboratory data acquired and relevant information.


    In case of emergency and only according to specific indications by the University of Genoa, the assessment method for the exam might be changed, including the possibility of an online procedure.


    The exam will focus on the discussion of the laboratory practices, and on the properties of the used polymers and printed manufacts. Each student will be asked to discuss the activities carried out during one laboratory practice, with the help of a PowerPoint presentation.

    The aim of the exam is to verify the achievements of the foreseen learning objectives. If those will not be reached, the student will be encouraged to further study the topics, also with the help of teacher’ explanations, and try again to perform the exam. The detailed program of the course will be uploaded on AulaWeb, in order to guarantee the adherence of the lessons’ content to the planned objectives. During the laboratory classes, teachers will assess the extent of students participation and their capability of carrying on experimental work. The individual oral exam will allow ascertaining the attainment of an adequate level of knowledge, on the topics of the course, with particular reference to polymer additive manufacturing and correlations between polymer-printing conditions and properties.

    Exam schedule

    Date Time Location Type Notes
    10/06/2022 11:00 GENOVA Orale
    29/07/2022 10:00 GENOVA Orale