CODE 60352 ACADEMIC YEAR 2023/2024 CREDITS 6 cfu anno 2 INGEGNERIA ELETTRICA 8716 (L-9) - GENOVA SCIENTIFIC DISCIPLINARY SECTOR MAT/07 LANGUAGE Italian TEACHING LOCATION GENOVA SEMESTER 1° Semester PREREQUISITES Propedeuticità in ingresso Per sostenere l'esame di questo insegnamento è necessario aver sostenuto i seguenti esami: Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL ANALYSIS I 56594 2022 GEOMETRY 56716 2022 FUNDAMENTAL OF PHYSICS 72360 2022 Propedeuticità in uscita Questo insegnamento è propedeutico per gli insegnamenti: Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 Electrical Engineering 8716 (coorte 2022/2023) MATHEMATICAL PHYSICS 1 60352 2022 MODULES Questo insegnamento è un modulo di: MATHEMATICAL ANALYSIS II AND PHYSICS TEACHING MATERIALS AULAWEB AIMS AND CONTENT AIMS AND LEARNING OUTCOMES The main objective of this module is a rational approach to the following issues: 1) Kinematics of matererial point by a geometrical description of spatial curves. 2) Equilibrium and dynamics of discrete or continuum material systems using cardinal equations of mechanics 3) Inertial èproperties of material systems 4) A Lagrangian description by the introduction of free coordinates for system subject to constraints and the role of first integrals. 5) Equilibrium and stability by analytical approaches. The module aims to give some technical skills on the following problems: 1) KInematical and dynamical description of a system subject to constraints 2) Computation of kynetic anf potential enrgies by the Lagrangian formalism and the derivation of differential equations of motion 3) Computation of equilibrium configurations of a mechanical system and a discussion on their stability. At the end of the course the student can arrive at the following results: 1) The knowledge of the algebraic and analytical tools necessary to the description of motion. 2) Understanding the main mathematical techniques relating linear momentum, angular momentum and energy to the inertial and dynamical properties of a mechnical system. 3) The ability to analize a mechanical systems subject to given loads and constraints, achieving results on the equilibrium conditions and obtaining the differential equations of motion, also recognizing possible first integrals. TEACHING METHODS Lectures on the theoretical contents with applications and exercises. SYLLABUS/CONTENT INTRODUCTION MASSIVE POINT Kinematics of the massive point Mechanics of the free and constrained point RELATIVE MECHANICS Derivation and observer, Poisson formula Relative kinematics Relative mechanics DISCRETE SYSTEMS Newton third principle and internal forces Equation for the cinetic and angolar momenta Center of mass RIGID BODY RIgidity constraints and the law of distribution of velocities Kinematics Operator of inertia Mechanics of the rigid body Constrained rigid body ANALITICAL MECHANICS Olonomous systems D'Alembert principle Euler-Lagrange equation Eulero-Lagrange equation and cardinal equations. INTRODUCTION TO STABILITY THEORY Equilibrium and stability for mechanical systems Small oscillations RECOMMENDED READING/BIBLIOGRAPHY Lecture notes by the teacher Valter Moretti: "Meccanica Analitica: Classical, Lagrangian and Hamiltonian Mechanics, Stability Theory, Special Relativity" TEACHERS AND EXAM BOARD PIERRE OLIVIER MARTINETTI Ricevimento: On appointment SIMONE MURRO Exam Board EDOARDO MAININI (President) SIMONE MURRO (President) LAURA BURLANDO (President Substitute) PIERRE OLIVIER MARTINETTI (President Substitute) LESSONS Class schedule L'orario di tutti gli insegnamenti è consultabile all'indirizzo EasyAcademy. EXAMS Exam schedule Data Ora Luogo Degree type Note 19/01/2024 09:00 GENOVA Scritto + Orale 22/01/2024 09:00 GENOVA Scritto 13/02/2024 09:00 GENOVA Scritto 15/02/2024 09:00 GENOVA Scritto + Orale 24/06/2024 09:00 GENOVA Scritto + Orale 26/06/2024 09:00 GENOVA Scritto 16/07/2024 09:00 GENOVA Scritto 18/07/2024 09:00 GENOVA Scritto + Orale 30/08/2024 09:00 GENOVA Scritto 13/09/2024 09:00 GENOVA Scritto + Orale