Salta al contenuto principale della pagina

SOFT MATTER PHYSICS

CODE 61863
ACADEMIC YEAR 2022/2023
CREDITS
  • 6 cfu during the 2nd year of 9017 SCIENZA E INGEGNERIA DEI MATERIALI (LM-53) - GENOVA
  • 6 cfu during the 2nd year of 9012 FISICA(LM-17) - GENOVA
  • 6 cfu during the 1st year of 9012 FISICA(LM-17) - GENOVA
  • 6 cfu during the 1st year of 11430 SCIENZA E TECNOLOGIA DEI MATERIALI (LM SC.MAT.) - GENOVA
  • SCIENTIFIC DISCIPLINARY SECTOR FIS/07
    TEACHING LOCATION
  • GENOVA
  • SEMESTER 2° Semester
    PREREQUISITES
    Prerequisites
    You can take the exam for this unit if you passed the following exam(s):
    • PHYSICS 9012 (coorte 2021/2022)
    • MATTER PHYSICS 2 61844
    • THEORETICAL PHYSICS 61842
    • NUCLEAR AND PARTICLE PHYSICS AND ASTROPHYSICS 2 61847
    TEACHING MATERIALS AULAWEB

    OVERVIEW

    The term "soft matter" refers to those systems characterized by binding energies comparable to thermal energy and by the tendency of the constituents to spontaneously form mesoscopic structures. The course deals with the study of these systems, including colloids, polymers and liquid crystals, with particular attention to applications in biophysics and nanotechnology.

     

    AIMS AND CONTENT

    LEARNING OUTCOMES

    The course is aimed to provide an introduction to the study of soft matter, which is characterized by weak interactions between nano-sized building blocks and important effects of thermal fluctuations. Students will acquire knowledge on the characteristic features of soft materials, the forces acting in these systems, the physical models which describe their behavior.

    AIMS AND LEARNING OUTCOMES

    At the end of the course, the student will be able to: understand the origin of the interactions that take place in soft matter and know their properties; recognize the different types of soft systems (colloidal suspensions, gels, liquid crystals ...); describe the behavior of polymeric molecules using models based on general physical properties; apply the concept of critical packing parameter in self-assembly processes; describe the conformational transitions occurring at the molecular level in a liquid crystal display; understand how the knowledge of the general properties of soft matter opens the way to the design of nanomaterials with specific desired properties.

    The course can also be chosen by students of the Master Degree in Materials Science and Technology. In this context, the training activities and acquired skills are particularly suitable for the "Materials Scientist: Research Specialist" profile

    PREREQUISITES

    To effectively address the contents of the course, knowledge of the basic concepts of electromagnetism and statistical mechanics provided in the three-year degree course is advisable.

    TEACHING METHODS

    The course is based on traditional lectures (48 h).

    SYLLABUS/CONTENT

    Intermolecular forces – Hydrophobic interaction – Surface tension – Van der Waals forces between particles and surfaces – Electrostatic forces between surfaces in liquid: the Poisson-Botzmann equation; the Grahame equation; the Debye length – Colloids – DLVO interaction and stability of a colloidal suspension – Brownian motion – Polymers – Polymer models: freely jointed chain, worm-like chain – Thermodynamic principles of molecular self-assembly – Micelles, liposomes, planar bilayers, mesophases – Liquid crystals – The Frederiks transition and the liquid crystal display – Soft matter and biological molecules.

    RECOMMENDED READING/BIBLIOGRAPHY

    • Israelachvili J. Intermolecular and Surface Forces, 2011 Academic Press - Elsevier

    • Jones, R. A. Soft condensed matter, 2002 Oxford University Press

    • Berg, J.C. An introduction to interfaces and colloids - The bridge to nanoscience. 2010 World Scientific

    • Rubinstein M., Colby R. H., Polymer physics, Oxford University Press, 2010

    • Chaikin P. M., Lubensky T. C., Principles of condensed matter physics, 1997 Cambridge University Press

    • Phillips, R., Kondev, J., Theriot, J., Physical Biology of the Cell, 2013 Garland Science.

    TEACHERS AND EXAM BOARD

    Exam Board

    ANNALISA RELINI (President)

    ALESSANDRA PESCE

    ORNELLA CAVALLERI (President Substitute)

    LESSONS

    LESSONS START

    Second semester - For lessons start and timetable go to the link: https://easyacademy.unige.it/portalestudenti/

    Class schedule

    All class schedules are posted on the EasyAcademy portal.

    EXAMS

    EXAM DESCRIPTION

    The exam consists of an oral test on the topics covered by the course. The detailed program of the topics is available on Aulaweb

    ASSESSMENT METHODS

    The oral exam is always conducted by the professor who is responsible for the course and by another expert in the subject (usually another professor). The oral exam takes about 50 minutes and consists of a fixed number of questions (the same for all students) on the course topics. It allows the commission to assess the student's level of understanding of the course topics and the student's ability to discern the validity limits of the models used. The assessment will take into account the quality of the presentation, the correct use of the specialist vocabulary, the ability to critical reasoning.