CODE  66283 

ACADEMIC YEAR  2023/2024 
CREDITS 

SCIENTIFIC DISCIPLINARY SECTOR  ICAR/08 
LANGUAGE  Italian 
TEACHING LOCATION 

SEMESTER  1° Semester 
PREREQUISITES 
Prerequisites
You can take the exam for this unit if you passed the following exam(s):

MODULES  This unit is a module of: 
TEACHING MATERIALS  AULAWEB 
The course introduces the basic principles and methodological aspects of theoretical and applied mechanics, by adopting the tools of mathematical physics. The linear models for the static, kinematic and elastic behaviour of solids and structures are introduced to establish the fundamentals of the structural design. The student develops the engineering confidence and the operational skills to deal with elastic problems of increasing difficulty.
The course provides the fundamental knowledge of Solid Mechanics and Structural Mechanics: Statics and kinematics of rigid bodies, Linear elastic problem for deformable onedimensional beams, Linear elastic problem for deformable threedimensional solids, De Saint Venant problem, Stability of the static equilibrium.
OBJECTIVES. Understanding of the theoretical foundations of mechanics (kinematic compatibility, quasi‐static force equilibrium, laws of virtual works and energy conservation). Acquisition of the mathematical tools employed in the formulation of the physical models describing the mechanical behaviour of structural elements and complex structures (discrete models of rigid bodies, continuous models of mono‐ and tri‐ dimensional deformable beams, continuous and discrete models of planar frames). Development of the engineering awareness required for the formulation of structural analysis problems of increasing complexity, and attainment of sufficient proficiency in the practical application of the related solution techniques, focused on the structural design in the elastic field through the allowable stress method.
LEARNING OUTCOMES. Upon successful completion of the course, the student will have gained the engineering awareness and operational skills for (a) the formulation and solution of elastic problems for planar frames of deformable beams in the presence of external forces, ground displacements and thermal effects, with focus on the kinematic (generalized displacement and deformation variables) and static unknowns (generalized stress variables); (b) the formulation and solution of the elastic problem for three dimensional deformable prismatic solids, with focus on the kinematic (strain tensor) and static unknowns (stress tensor); (c) the structural design through the allowable stress method.
The teaching activities are carried out in the form of theoretical lessons, accompanied by illustration of application examples and, on specific request of the students, by guided exercises to the solution of typical problems and casestudies. Classes could be held online, on the Teams platform, if necessary for emergency reasons.
PART I (10 hours): physical mathematical models of rigid bodies, quasi‐static forces, bilateral holonomic time‐independent constraints, static problem and kinematic problem for rigid bodies. PART II (20 hours): one‐dimensional continuum model of deformable beams (Euler‐Bernoulli and Timoshenko models); static problem, kinematic problem and linear elastic constitutive law for deformable beams; elastic problem and law of virtual works for deformable beams; force method and displacement method for the solution of planar frames of deformable beams. PART III (10 hours): three‐dimensional continuum model of deformable solids (Cauchy model); static problem, kinematic problem and linear elastic constitutive law for the deformable solids; elastic problem for deformable solids. PART IV (20 hours): three‐dimensional continuum model of deformable prismatic solids (De Saint Venant model); elastic problem for the deformable prismatic solids and semi‐inverse method of solution; elementary problems of uniform extension, uniform and non‐uniform flexion, torsion. COMPLEMENTARY: structural design according to the method of allowable stresses; stability of equilibrium.
Office hours: Every Tuesday afternoon at 5.00pm. Further information can be found in the Aulaweb page of the course for the current year.
All class schedules are posted on the EasyAcademy portal.
The final exam involves the sequential execution of (A) a WRITTEN TEST, possibly replaceable by two partial written tests and (B) an ORAL TEST, which can be accessed only after passing the written test. Exams could be held online, on the Teams platform, if necessary for emergency reasons.
The final exam involves the sequential execution of (A) a WRITTEN TEST, possibly replaceable by two partial written tests, aimed at ascertaining the application skills acquired by the student in solving exercises related to (i) Elastic problem in determined systems of beams, (ii) Elastic problem in indetermined systems of beams, (iii) Tension fields in the De Saint Venant solid and allowable stress design; (B) an ORAL TEST, which can be accessed only after passing the written test, aimed at ascertaining the theoretical and methodological knowledge acquired by the student, by answering some questions on all the topics of the course program. Registered students can find more information by consulting the "Guide to the Exam" or the "Instructions for the online exams" for the current year, downloadable from the Aulaweb page of the course.
Date  Time  Location  Type  Notes 
